Suppr超能文献

用数字孪生技术预测对比敏感度函数。

Predicting contrast sensitivity functions with digital twins.

机构信息

Center for Neural Science, New York University, New York, USA.

Adaptive Sensory Technology Inc., San Diego, CA, USA.

出版信息

Sci Rep. 2024 Oct 15;14(1):24100. doi: 10.1038/s41598-024-73859-x.

Abstract

We developed and validated digital twins (DTs) for contrast sensitivity function (CSF) across 12 prediction tasks using a data-driven, generative model approach based on a hierarchical Bayesian model (HBM). For each prediction task, we utilized the HBM to compute the joint distribution of CSF hyperparameters and parameters at the population, subject, and test levels. This computation was based on a combination of historical data (N = 56), any new data from additional subjects (N = 56), and "missing data" from unmeasured conditions. The posterior distributions of the parameters in the unmeasured conditions were used as input for the CSF generative model to generate predicted CSFs. In addition to their accuracy and precision, these predictions were evaluated for their potential as informative priors that enable generation of synthetic quantitative contrast sensitivity function (qCSF) data or rescore existing qCSF data. The DTs demonstrated high accuracy in group level predictions across all tasks and maintained accuracy at the individual subject level when new data were available, with accuracy comparable to and precision lower than the observed data. DT predictions could reduce the data collection burden by more than 50% in qCSF testing when using 25 trials. Although further research is necessary, this study demonstrates the potential of DTs in vision assessment. Predictions from DTs could improve the accuracy, precision, and efficiency of vision assessment and enable personalized medicine, offering more efficient and effective patient care solutions.

摘要

我们使用基于分层贝叶斯模型(HBM)的数据驱动生成模型方法,开发并验证了用于对比敏感度函数(CSF)的数字双胞胎(DT),涵盖了 12 项预测任务。对于每个预测任务,我们利用 HBM 来计算 CSF 超参数和参数在人群、个体和测试水平上的联合分布。这种计算基于历史数据(N=56)、来自其他个体的任何新数据(N=56)以及未测量条件下的“缺失数据”的组合。在未测量条件下的参数的后验分布被用作 CSF 生成模型的输入,以生成预测的 CSF。除了准确性和精度外,还评估了这些预测作为信息先验的潜力,这些先验可以生成合成定量对比敏感度函数(qCSF)数据或重新评分现有的 qCSF 数据。DT 在所有任务的组水平预测中都表现出了很高的准确性,并且在有新数据可用时在个体主体水平上保持了准确性,其准确性与观察数据相当,而精度则低于观察数据。当使用 25 次试验时,DT 预测可以将 qCSF 测试中的数据收集负担减少 50%以上。尽管还需要进一步研究,但本研究证明了 DT 在视觉评估中的潜力。DT 的预测可以提高视觉评估的准确性、精度和效率,并实现个性化医疗,为患者提供更高效和有效的护理解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a041/11480470/6e96e87f734d/41598_2024_73859_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验