Center for Neural Science, New York University, New York, NY, USA.
Department of Cognitive Sciences and Institute of Mathematical Behavioral Sciences, University of California, Irvine, CA, USA.
J Vis. 2024 May 1;24(5):8. doi: 10.1167/jov.24.5.8.
Perceptual learning is a multifaceted process, encompassing general learning, between-session forgetting or consolidation, and within-session fast relearning and deterioration. The learning curve constructed from threshold estimates in blocks or sessions, based on tens or hundreds of trials, may obscure component processes; high temporal resolution is necessary. We developed two nonparametric inference procedures: a Bayesian inference procedure (BIP) to estimate the posterior distribution of contrast threshold in each learning block for each learner independently and a hierarchical Bayesian model (HBM) that computes the joint posterior distribution of contrast threshold across all learning blocks at the population, subject, and test levels via the covariance of contrast thresholds across blocks. We applied the procedures to the data from two studies that investigated the interaction between feedback and training accuracy in Gabor orientation identification over 1920 trials across six sessions and estimated learning curve with block sizes L = 10, 20, 40, 80, 160, and 320 trials. The HBM generated significantly better fits to the data, smaller standard deviations, and more precise estimates, compared to the BIP across all block sizes. In addition, the HBM generated unbiased estimates, whereas the BIP only generated unbiased estimates with large block sizes but exhibited increased bias with small block sizes. With L = 10, 20, and 40, we were able to consistently identify general learning, between-session forgetting, and rapid relearning and adaptation within sessions. The nonparametric HBM provides a general framework for fine-grained assessment of the learning curve and enables identification of component processes in perceptual learning.
知觉学习是一个多方面的过程,包括一般学习、会话间遗忘或巩固,以及会话内快速再学习和恶化。基于数十或数百次试验,从块或会话中的阈值估计构建的学习曲线可能会掩盖组成过程;需要高时间分辨率。我们开发了两种非参数推断程序:贝叶斯推断程序(BIP),用于独立估计每个学习者在每个学习块中的对比度阈值的后验分布,以及层次贝叶斯模型(HBM),该模型通过块间对比度阈值的协方差在群体、个体和测试水平上计算对比度阈值在所有学习块中的联合后验分布。我们将这些程序应用于两项研究的数据中,这两项研究调查了在 6 个会话的 1920 次试验中,反馈和训练准确性之间的相互作用,并用 10、20、40、80、160 和 320 次试验的块大小 L 估计学习曲线。与 BIP 相比,HBM 在所有块大小上都产生了更好的拟合、更小的标准差和更精确的估计。此外,HBM 产生了无偏估计,而 BIP 仅在块尺寸较大时产生无偏估计,但在块尺寸较小时会产生较大的偏差。在 L = 10、20 和 40 时,我们能够一致地识别一般学习、会话间遗忘和会话内快速再学习和适应。非参数 HBM 为精细评估学习曲线提供了一个通用框架,并能够识别知觉学习中的组成过程。