文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

EpiBrCan-Lite:一种用于使用表观基因组数据进行乳腺癌亚型分类的轻量级深度学习模型。

EpiBrCan-Lite: A lightweight deep learning model for breast cancer subtype classification using epigenomic data.

作者信息

Bedi Punam, Rani Surbhi, Gupta Bhavna, Bhasin Veenu, Gole Pushkar

机构信息

Department of Computer Science, University of Delhi, Delhi, India.

Keshav Mahavidyalaya, University of Delhi, New Delhi, India.

出版信息

Comput Methods Programs Biomed. 2025 Mar;260:108553. doi: 10.1016/j.cmpb.2024.108553. Epub 2024 Dec 4.


DOI:10.1016/j.cmpb.2024.108553
PMID:39667144
Abstract

BACKGROUND AND OBJECTIVES: Early breast cancer subtypes classification improves the survival rate as it facilitates prognosis of the patient. In literature this problem was prominently solved by various Machine Learning and Deep Learning techniques. However, these studies have three major shortcomings: huge Trainable Weight Parameters (TWP), suffer from low performance and class imbalance problem. METHODS: This paper proposes a lightweight model named EpiBrCan-Lite for classifying breast cancer subtypes using DNA methylation data. This model encompasses three blocks namely Data Encoding, TransGRU, and Classification blocks. In Data Encoding block, the input features are encoded into equal sized chunks and then passed down to TransGRU block which is a modified version of traditional Transformer Encoder (TE). In TransGRU block, MLP module of traditional TE is replaced by GRU module, consisting of two GRU layers to reduce TWP and capture the long-range dependencies of input feature data. Furthermore, output of TransGRU block is passed to Classification block for classifying breast cancer into their subtypes. RESULTS: The proposed model is validated using Accuracy, Precision, Recall, F1-score, FPR, and FNR metrics on TCGA breast cancer dataset. This dataset suffers from the class imbalance problem which is mitigated using Synthetic Minority Oversampling Technique (SMOTE). Experimentation results demonstrate that EpiBrCan-Lite model attained 95.85 % accuracy, 95.96 % recall, 95.85 % precision, 95.90 % F1-score, 1.03 % FPR, and 4.12 % FNR despite of utilizing only 1/1500 of TWP than other state-of-the-art models. CONCLUSION: EpiBrCan-Lite model is efficiently classifying breast cancer subtypes, and being lightweight, it is suitable to be deployed on low computational powered devices.

摘要

背景与目的:早期乳腺癌亚型分类有助于患者预后,从而提高生存率。在文献中,各种机器学习和深度学习技术显著解决了这个问题。然而,这些研究存在三个主要缺点:可训练权重参数(TWP)巨大、性能低下以及类别不平衡问题。 方法:本文提出了一种名为EpiBrCan-Lite的轻量级模型,用于使用DNA甲基化数据对乳腺癌亚型进行分类。该模型包含三个模块,即数据编码、TransGRU和分类模块。在数据编码模块中,输入特征被编码为大小相等的块,然后传递到TransGRU模块,该模块是传统Transformer编码器(TE)的改进版本。在TransGRU模块中,传统TE的MLP模块被GRU模块取代,该模块由两个GRU层组成,以减少TWP并捕获输入特征数据的长程依赖关系。此外,TransGRU模块的输出被传递到分类模块,以将乳腺癌分类为其亚型。 结果:使用TCGA乳腺癌数据集上的准确率、精确率、召回率、F1分数、FPR和FNR指标对所提出的模型进行了验证。该数据集存在类别不平衡问题,使用合成少数过采样技术(SMOTE)进行了缓解。实验结果表明,尽管EpiBrCan-Lite模型使用的TWP仅为其他现有模型的1/1500,但仍达到了95.85%的准确率、95.96%的召回率、95.85%的精确率、95.90%的F1分数、1.03%的FPR和4.12%的FNR。 结论:EpiBrCan-Lite模型能够有效地对乳腺癌亚型进行分类,并且由于其轻量级,适合部署在低计算能力的设备上。

相似文献

[1]
EpiBrCan-Lite: A lightweight deep learning model for breast cancer subtype classification using epigenomic data.

Comput Methods Programs Biomed. 2025-3

[2]
Enhancing the prediction of IDC breast cancer staging from gene expression profiles using hybrid feature selection methods and deep learning architecture.

Med Biol Eng Comput. 2023-11

[3]
Deep Learning Feature Extraction Approach for Hematopoietic Cancer Subtype Classification.

Int J Environ Res Public Health. 2021-2-23

[4]
MOB-CBAM: A dual-channel attention-based deep learning generalizable model for breast cancer molecular subtypes prediction using mammograms.

Comput Methods Programs Biomed. 2024-5

[5]
A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance.

BMC Med Res Methodol. 2022-7-2

[6]
RAE-Net: a multi-modal neural network based on feature fusion and evidential deep learning algorithm in predicting breast cancer subtypes on DCE-MRI.

Biomed Phys Eng Express. 2025-2-25

[7]
Binding Activity Classification of Anti-SARS-CoV-2 Molecules using Deep Learning Across Multiple Assays.

Balkan Med J. 2024-5-3

[8]
HBMD-Net: Feature Fusion Based Breast Cancer Classification with Class Imbalance Resolution.

J Imaging Inform Med. 2024-8

[9]
Multi-modal classification of breast cancer lesions in Digital Mammography and contrast enhanced spectral mammography images.

Comput Biol Med. 2024-12

[10]
A Novel Hybrid Deep Learning Model for Metastatic Cancer Detection.

Comput Intell Neurosci. 2022

引用本文的文献

[1]
Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review.

Biol Direct. 2025-6-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索