Bedi Punam, Rani Surbhi, Gupta Bhavna, Bhasin Veenu, Gole Pushkar
Department of Computer Science, University of Delhi, Delhi, India.
Keshav Mahavidyalaya, University of Delhi, New Delhi, India.
Comput Methods Programs Biomed. 2025 Mar;260:108553. doi: 10.1016/j.cmpb.2024.108553. Epub 2024 Dec 4.
BACKGROUND AND OBJECTIVES: Early breast cancer subtypes classification improves the survival rate as it facilitates prognosis of the patient. In literature this problem was prominently solved by various Machine Learning and Deep Learning techniques. However, these studies have three major shortcomings: huge Trainable Weight Parameters (TWP), suffer from low performance and class imbalance problem. METHODS: This paper proposes a lightweight model named EpiBrCan-Lite for classifying breast cancer subtypes using DNA methylation data. This model encompasses three blocks namely Data Encoding, TransGRU, and Classification blocks. In Data Encoding block, the input features are encoded into equal sized chunks and then passed down to TransGRU block which is a modified version of traditional Transformer Encoder (TE). In TransGRU block, MLP module of traditional TE is replaced by GRU module, consisting of two GRU layers to reduce TWP and capture the long-range dependencies of input feature data. Furthermore, output of TransGRU block is passed to Classification block for classifying breast cancer into their subtypes. RESULTS: The proposed model is validated using Accuracy, Precision, Recall, F1-score, FPR, and FNR metrics on TCGA breast cancer dataset. This dataset suffers from the class imbalance problem which is mitigated using Synthetic Minority Oversampling Technique (SMOTE). Experimentation results demonstrate that EpiBrCan-Lite model attained 95.85 % accuracy, 95.96 % recall, 95.85 % precision, 95.90 % F1-score, 1.03 % FPR, and 4.12 % FNR despite of utilizing only 1/1500 of TWP than other state-of-the-art models. CONCLUSION: EpiBrCan-Lite model is efficiently classifying breast cancer subtypes, and being lightweight, it is suitable to be deployed on low computational powered devices.
背景与目的:早期乳腺癌亚型分类有助于患者预后,从而提高生存率。在文献中,各种机器学习和深度学习技术显著解决了这个问题。然而,这些研究存在三个主要缺点:可训练权重参数(TWP)巨大、性能低下以及类别不平衡问题。 方法:本文提出了一种名为EpiBrCan-Lite的轻量级模型,用于使用DNA甲基化数据对乳腺癌亚型进行分类。该模型包含三个模块,即数据编码、TransGRU和分类模块。在数据编码模块中,输入特征被编码为大小相等的块,然后传递到TransGRU模块,该模块是传统Transformer编码器(TE)的改进版本。在TransGRU模块中,传统TE的MLP模块被GRU模块取代,该模块由两个GRU层组成,以减少TWP并捕获输入特征数据的长程依赖关系。此外,TransGRU模块的输出被传递到分类模块,以将乳腺癌分类为其亚型。 结果:使用TCGA乳腺癌数据集上的准确率、精确率、召回率、F1分数、FPR和FNR指标对所提出的模型进行了验证。该数据集存在类别不平衡问题,使用合成少数过采样技术(SMOTE)进行了缓解。实验结果表明,尽管EpiBrCan-Lite模型使用的TWP仅为其他现有模型的1/1500,但仍达到了95.85%的准确率、95.96%的召回率、95.85%的精确率、95.90%的F1分数、1.03%的FPR和4.12%的FNR。 结论:EpiBrCan-Lite模型能够有效地对乳腺癌亚型进行分类,并且由于其轻量级,适合部署在低计算能力的设备上。
Comput Methods Programs Biomed. 2025-3
Int J Environ Res Public Health. 2021-2-23
Comput Methods Programs Biomed. 2024-5
J Imaging Inform Med. 2024-8
Comput Intell Neurosci. 2022