Suppr超能文献

预测腰椎间盘的生物力学行为:一种新型人工椎间盘设计的比较有限元分析

Predicting the biomechanical behavior of lumbar intervertebral Discs: A comparative finite element analysis of a novel artificial disc design.

作者信息

Khanna Ashutosh, Jain Pushpdant, Paul C P

机构信息

School of Mechanical Engineering, VIT Bhopal University, Indore-Bhopal Highway, Kothrikalan, Dist. Sehore, Madhya Pradesh 466114, India.

School of Mechanical Engineering, VIT Bhopal University, Indore-Bhopal Highway, Kothrikalan, Dist. Sehore, Madhya Pradesh 466114, India.

出版信息

J Clin Neurosci. 2025 Feb;132:110960. doi: 10.1016/j.jocn.2024.110960. Epub 2024 Dec 12.

Abstract

Osseointegration along with better mimicry of natural bone behaviour addresses the long-term performance of artificial intervertebral disc prosthesis. Here the effect of a novel artificial intervertebral disc geometry on stress, deformation and strain on lumbar segments to restore movement of the spine was investigated. The process involved, using CT image data, and solid modelling, simulation-driven design and finite element (FE) analysis, hexahedral mesh sensitivity analysis, implant placements. The range of motion (ROM) was calculated using an ANSYS deformation probe. The intact lumbar spine model established was compared with two implants, replacement at segment L4-L5 level, and biomechanical results were compared using axial loads of 500 N, 800 N, 1000 N and 10Nm moment. The two lumbosacral FE models, a novel implant Titanium Conix (TIC) and another FDA approved SB Charite™ (SBC) implant were considered. Novel TIC implant geometry exhibited comparable ROM values in four physiological motions, which were comparable to as required for restoring natural motion. The result shows that the proposed TIC observed the deformation during flexion, extension, bending and twist as 3.43 mm, 3.19 mm, 3.33 mm and 3.48 mm respectively. Similarly strain of 0.01 during flexion, 0.02 during extension, 0.01 during bending and 0.02 during twist. The implants designed in this study demonstrate the suitability of titanium alloy in endplates and annulus. The FE models in the study with their biomechanical parameters can be considered before clinical implementation of any implants, pre-surgery evaluations, implant placement simulations, postsurgical response, follow-up revisions, implant customization and manufacturing.

摘要

骨整合以及对天然骨行为更好的模拟解决了人工椎间盘假体的长期性能问题。在此,研究了一种新型人工椎间盘几何形状对腰椎节段应力、变形和应变的影响,以恢复脊柱的运动。该过程包括使用CT图像数据、实体建模、模拟驱动设计和有限元(FE)分析、六面体网格敏感性分析以及植入物放置。使用ANSYS变形探头计算运动范围(ROM)。将建立的完整腰椎模型与两个植入物进行比较,在L4-L5节段进行置换,并使用500 N、800 N、1000 N的轴向载荷和10 Nm的力矩比较生物力学结果。考虑了两个腰骶部有限元模型,一种新型植入物钛Conix(TIC)和另一种FDA批准的SB Charite™(SBC)植入物。新型TIC植入物几何形状在四种生理运动中表现出可比的ROM值,这与恢复自然运动所需的值相当。结果表明,所提出的TIC在屈曲、伸展、侧弯和扭转时的变形分别为3.43 mm、3.19 mm、3.33 mm和3.48 mm。同样,屈曲时应变0.01,伸展时应变0.02,侧弯时应变0.01,扭转时应变0.02。本研究中设计的植入物证明了钛合金在终板和纤维环中的适用性。在任何植入物临床应用、术前评估、植入物放置模拟、术后反应、随访修订、植入物定制和制造之前,可以考虑本研究中具有生物力学参数的有限元模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验