Suppr超能文献

超越电子健康记录数据:利用自然语言处理和机器学习从患者与护士的言语交流中挖掘认知见解。

Beyond electronic health record data: leveraging natural language processing and machine learning to uncover cognitive insights from patient-nurse verbal communications.

作者信息

Zolnoori Maryam, Zolnour Ali, Vergez Sasha, Sridharan Sridevi, Spens Ian, Topaz Maxim, Noble James M, Bakken Suzanne, Hirschberg Julia, Bowles Kathryn, Onorato Nicole, McDonald Margaret V

机构信息

Columbia University Irving Medical Center, New York, NY 10032, United States.

School of Nursing, Columbia University, New York, NY 10032, United States.

出版信息

J Am Med Inform Assoc. 2025 Feb 1;32(2):328-340. doi: 10.1093/jamia/ocae300.

Abstract

BACKGROUND

Mild cognitive impairment and early-stage dementia significantly impact healthcare utilization and costs, yet more than half of affected patients remain underdiagnosed. This study leverages audio-recorded patient-nurse verbal communication in home healthcare settings to develop an artificial intelligence-based screening tool for early detection of cognitive decline.

OBJECTIVE

To develop a speech processing algorithm using routine patient-nurse verbal communication and evaluate its performance when combined with electronic health record (EHR) data in detecting early signs of cognitive decline.

METHOD

We analyzed 125 audio-recorded patient-nurse verbal communication for 47 patients from a major home healthcare agency in New York City. Out of 47 patients, 19 experienced symptoms associated with the onset of cognitive decline. A natural language processing algorithm was developed to extract domain-specific linguistic and interaction features from these recordings. The algorithm's performance was compared against EHR-based screening methods. Both standalone and combined data approaches were assessed using F1-score and area under the curve (AUC) metrics.

RESULTS

The initial model using only patient-nurse verbal communication achieved an F1-score of 85 and an AUC of 86.47. The model based on EHR data achieved an F1-score of 75.56 and an AUC of 79. Combining patient-nurse verbal communication with EHR data yielded the highest performance, with an F1-score of 88.89 and an AUC of 90.23. Key linguistic indicators of cognitive decline included reduced linguistic diversity, grammatical challenges, repetition, and altered speech patterns. Incorporating audio data significantly enhanced the risk prediction models for hospitalization and emergency department visits.

DISCUSSION

Routine verbal communication between patients and nurses contains critical linguistic and interactional indicators for identifying cognitive impairment. Integrating audio-recorded patient-nurse communication with EHR data provides a more comprehensive and accurate method for early detection of cognitive decline, potentially improving patient outcomes through timely interventions. This combined approach could revolutionize cognitive impairment screening in home healthcare settings.

摘要

背景

轻度认知障碍和早期痴呆症对医疗保健的利用和成本有重大影响,但超过一半的受影响患者仍未得到诊断。本研究利用家庭医疗环境中患者与护士的语音记录进行口头交流,开发一种基于人工智能的筛查工具,用于早期发现认知能力下降。

目的

开发一种使用患者与护士常规口头交流的语音处理算法,并评估其与电子健康记录(EHR)数据相结合时在检测认知能力下降早期迹象方面的性能。

方法

我们分析了纽约市一家大型家庭医疗机构47名患者的125份患者与护士口头交流的音频记录。在47名患者中,19名出现了与认知能力下降发作相关的症状。开发了一种自然语言处理算法,从这些记录中提取特定领域的语言和互动特征。将该算法的性能与基于EHR的筛查方法进行比较。使用F1分数和曲线下面积(AUC)指标评估独立数据方法和组合数据方法。

结果

仅使用患者与护士口头交流的初始模型的F1分数为85,AUC为86.47。基于EHR数据的模型的F1分数为75.56,AUC为79。将患者与护士口头交流与EHR数据相结合产生了最高性能,F1分数为88.89,AUC为90.23。认知能力下降的关键语言指标包括语言多样性降低、语法困难、重复和言语模式改变。纳入音频数据显著增强了住院和急诊就诊的风险预测模型。

讨论

患者与护士之间的常规口头交流包含识别认知障碍的关键语言和互动指标。将患者与护士的音频记录交流与EHR数据相结合,为早期发现认知能力下降提供了一种更全面、准确的方法,有可能通过及时干预改善患者预后。这种联合方法可能会彻底改变家庭医疗环境中的认知障碍筛查。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验