Velmurugan Gopal V, Vekaria Hemendra J, Patel Samir P, Sullivan Patrick G, Hubbard W Brad
Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.
Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
J Cereb Blood Flow Metab. 2024 Dec 12:271678X241306054. doi: 10.1177/0271678X241306054.
Intercellular mitochondrial transfer (IMT) is an intriguing biological phenomenon where mitochondria are transferred between different cells and notably, cell types. IMT is physiological, occurring in normal conditions, but also is utilized to deliver healthy mitochondria to cells in distress. Transferred mitochondria can be integrated to improve cellular metabolism, and mitochondrial function. Research on the mitochondrial transfer axis between astrocytes and brain capillaries is limited by the cellular heterogeneity of the neurovascular unit. To this end, we developed an inducible mouse model that expresses mitochondrial Dendra2 only in astrocytes and then isolated brain capillaries to remove all intact astrocytes. This method allows the visualization of astrocyte- endothelial cell (EC) and astrocyte-pericyte IMT. We demonstrate evidence of astrocyte-EC and astrocyte-pericyte mitochondrial transfer within brain capillaries. We also show that healthy aging enhances mitochondrial transfer from astrocytes to brain capillaries, revealing a potential link between brain aging and cellular mitochondrial dynamics. Finally, we observe that astrocyte-derived extracellular vesicles transfer mitochondria to brain microvascular endothelial cells, showing the potential route of IMT. These results represent a breakthrough in our understanding of IMT in the brain and a new target in brain aging and neurovascular metabolism.
细胞间线粒体转移(IMT)是一种有趣的生物学现象,即线粒体在不同细胞(尤其是不同细胞类型)之间进行转移。IMT是生理性的,在正常条件下就会发生,但也被用于将健康的线粒体递送至处于应激状态的细胞。转移的线粒体可以整合到细胞中,以改善细胞代谢和线粒体功能。星形胶质细胞与脑毛细血管之间线粒体转移轴的研究受到神经血管单元细胞异质性的限制。为此,我们开发了一种诱导型小鼠模型,该模型仅在星形胶质细胞中表达线粒体Dendra2,然后分离脑毛细血管以去除所有完整的星形胶质细胞。这种方法可以实现对星形胶质细胞-内皮细胞(EC)和星形胶质细胞-周细胞之间IMT的可视化。我们证明了脑毛细血管内星形胶质细胞-EC和星形胶质细胞-周细胞之间存在线粒体转移的证据。我们还表明,健康衰老会增强线粒体从星形胶质细胞向脑毛细血管的转移,揭示了脑衰老与细胞线粒体动力学之间的潜在联系。最后,我们观察到星形胶质细胞衍生的细胞外囊泡将线粒体转移至脑微血管内皮细胞,显示了IMT的潜在途径。这些结果代表了我们对大脑中IMT理解的突破,以及脑衰老和神经血管代谢方面的一个新靶点。