School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
BMC Med Res Methodol. 2018 Jul 4;18(1):70. doi: 10.1186/s12874-018-0531-9.
Systematic reviews and meta-analyses of binary outcomes are widespread in all areas of application. The odds ratio, in particular, is by far the most popular effect measure. However, the standard meta-analysis of odds ratios using a random-effects model has a number of potential problems. An attractive alternative approach for the meta-analysis of binary outcomes uses a class of generalized linear mixed models (GLMMs). GLMMs are believed to overcome the problems of the standard random-effects model because they use a correct binomial-normal likelihood. However, this belief is based on theoretical considerations, and no sufficient simulations have assessed the performance of GLMMs in meta-analysis. This gap may be due to the computational complexity of these models and the resulting considerable time requirements.
The present study is the first to provide extensive simulations on the performance of four GLMM methods (models with fixed and random study effects and two conditional methods) for meta-analysis of odds ratios in comparison to the standard random effects model.
In our simulations, the hypergeometric-normal model provided less biased estimation of the heterogeneity variance than the standard random-effects meta-analysis using the restricted maximum likelihood (REML) estimation when the data were sparse, but the REML method performed similarly for the point estimation of the odds ratio, and better for the interval estimation.
It is difficult to recommend the use of GLMMs in the practice of meta-analysis. The problem of finding uniformly good methods of the meta-analysis for binary outcomes is still open.
系统评价和荟萃分析在各个应用领域都广泛存在,二分类结局的汇总分析更是如此。尤其是比值比(odds ratio,OR),是迄今为止最受欢迎的效应量。然而,使用随机效应模型的标准 OR 荟萃分析存在一些潜在问题。对于二分类结局的荟萃分析,一种有吸引力的替代方法是使用一类广义线性混合模型(generalized linear mixed models,GLMMs)。GLMMs 被认为可以克服标准随机效应模型的问题,因为它们使用正确的二项式-正态似然。然而,这种信念是基于理论考虑,并且没有足够的模拟来评估 GLMM 在荟萃分析中的性能。这种差距可能是由于这些模型的计算复杂性以及由此产生的大量时间需求。
本研究首次对四种 GLMM 方法(具有固定和随机研究效应的模型以及两种条件方法)在荟萃分析 OR 中的性能进行了广泛的模拟,与标准随机效应模型进行了比较。
在我们的模拟中,当数据稀疏时,超几何正态模型比使用限制性极大似然(restricted maximum likelihood,REML)估计的标准随机效应荟萃分析提供了对异质性方差更小的有偏估计,但 REML 方法在 OR 的点估计方面表现相似,在区间估计方面表现更好。
在荟萃分析实践中,GLMM 的使用很难得到推荐。对于二分类结局,寻找统一的荟萃分析方法的问题仍然没有解决。