Suppr超能文献

一种基于传统亚齐房屋、使用人工神经网络的室内热环境模型。

A model of indoor thermal condition based on traditional acehnese houses using artificial neural network.

作者信息

Munir Abdul, Away Yuwaldi, Arif Teuku Yuliar, Novandri Andri

机构信息

Doctoral Program, School of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.

Department of Architecture and Planning, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.

出版信息

Heliyon. 2024 Nov 26;10(23):e40644. doi: 10.1016/j.heliyon.2024.e40644. eCollection 2024 Dec 15.

Abstract

This paper examines the thermal condition aspects of traditional Acehnese houses (Rumoh Aceh) in Indonesia. This study highlights the importance of considering traditional architecture in achieving comfortable living conditions. Through the integration of cultural values, architectural design, and environmental factors, this research evaluates the prediction of thermal conditions within Rumoh Aceh based on building orientation and location, serving as guidelines for architects in designing buildings in the Aceh region. The study employs an ANN (Artificial Neural Network) algorithm to predict thermal condition parameters including indoor: temperature, humidity, and wind speed. The sample data used to train the ANN model consists of thermal data from five different rooms and meteorological data. The ANN model is employed to predict the thermal conditions in the Rumoh Aceh building based on its orientation and location. In this study, two models were developed, namely MODEL_01, for predicting indoor temperature and humidity, and MODEL_02, for predicting indoor wind speed. In MODEL_01, the error tolerance level obtained is ±1.05, and in MODEL_02, it is ±0.03. The prediction results based on the building orientation show the lowest average indoor temperature value of 29.19 °C, occurring at an angle of 292.19°. Furthermore, the lowest average indoor humidity value is 74.57 %, which also occurs at an angle of 292.19°. However, for indoor wind speed, the angle of 260° records the lowest average value of 0.125 m/s, while the highest average value is observed at 292.19°, at 0.132 m/s. The prediction results based on the building's location show the lowest average temperature value, which is 29.44 °C in the Aceh Besar region. Furthermore, the lowest average humidity value is 75.11 % in the North Aceh region. Meanwhile, the highest average wind speed value is 0.174 m/s in the Sabang region. This study reveals that at the orientation angle of 292.19° (the qibla direction), it produces optimal thermal conditions in terms of temperature and humidity with low wind speed. Other findings indicate that the Aceh Besar, North Aceh, and Sabang regions have optimal thermal conditions based on temperature, humidity, and wind speed.

摘要

本文研究了印度尼西亚传统亚齐房屋(Rumoh Aceh)的热状况。本研究强调了在实现舒适居住条件方面考虑传统建筑的重要性。通过文化价值、建筑设计和环境因素的整合,本研究基于建筑朝向和位置评估了Rumoh Aceh内部热状况的预测,为亚齐地区的建筑师设计建筑提供指导。该研究采用人工神经网络(ANN)算法来预测热状况参数,包括室内温度、湿度和风速。用于训练ANN模型的样本数据包括来自五个不同房间的热数据和气象数据。ANN模型用于根据Rumoh Aceh建筑的朝向和位置预测其热状况。在本研究中,开发了两个模型,即用于预测室内温度和湿度的MODEL_01,以及用于预测室内风速的MODEL_02。在MODEL_01中,获得的误差容忍水平为±1.05,在MODEL_02中为±0.03。基于建筑朝向的预测结果显示,室内平均温度最低值为29.19°C,出现在292.19°角处。此外,室内平均湿度最低值为74.57%,同样出现在292.19°角处。然而,对于室内风速,260°角记录的最低平均值为0.125 m/s,而最高平均值出现在292.19°角处,为0.132 m/s。基于建筑位置的预测结果显示,亚齐省地区的平均温度最低值为29.44°C。此外,北亚齐地区的平均湿度最低值为75.11%。同时,沙璜地区的平均风速最高值为0.174 m/s。本研究表明,在292.19°(朝向麦加方向)的朝向角度下,在温度和湿度方面产生了最佳热状况,风速较低。其他研究结果表明,基于温度、湿度和风速,亚齐省地区、北亚齐地区和沙璜地区具有最佳热状况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f38/11636117/6c559cdf016a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验