Suppr超能文献

基于高阶混合聚类算法的智能金融数据管理系统设计

Design of intelligent financial data management system based on higher-order hybrid clustering algorithm.

作者信息

Huang Ling, Lu Haitao

机构信息

School of Management, Wuhan Technology And Business University, Wuhan, China.

Department of Accounting, Henan Institute of Economics and Trade, Zhengzhou, China.

出版信息

PeerJ Comput Sci. 2024 Jan 24;10:e1799. doi: 10.7717/peerj-cs.1799. eCollection 2024.

Abstract

Amid the ever-expanding landscape of financial data, the importance of predicting potential risks through artificial intelligence methodologies has steadily risen. To achieve prudent financial data management, this manuscript delves into the domain of intelligent financial risk forecasting within the scope of system design. It presents a data model based on the variational encoder (VAE) enhanced with an attention mechanism meticulously tailored for forecasting a company's financial peril. The framework called the ATT-VAE embarks on its journey by encoding and enhancing multidimensional data through VAE. It then employs the attention mechanism to enrich the outputs of the VAE network, thereby demonstrating the apex of the model's clustering capabilities. In the experimentation, we implemented the model to a battery of training tests using diverse public datasets with multimodal features like AWA and CUB and verified with the local finance dataset. The results conspicuously highlight the model's commendable performance in comparison to publicly available datasets, surpassing numerous deep clustering networks at this juncture. In the realm of financial data, the ATT-VAE model, as presented within this treatise, achieves a clustering accuracy index exceeding 0.7, a feat demonstrably superior to its counterparts in the realm of deep clustering networks. The method outlined herein provides algorithmic foundations and serves as a pivotal reference for the prospective domain of intelligent financial data governance and scrutiny.

摘要

在不断扩展的金融数据领域中,通过人工智能方法预测潜在风险的重要性稳步提升。为实现审慎的金融数据管理,本文在系统设计范围内深入探讨智能金融风险预测领域。它提出了一种基于变分编码器(VAE)的数据模型,并通过精心定制的注意力机制进行增强,用于预测公司的财务风险。名为ATT-VAE的框架通过VAE对多维数据进行编码和增强来开启其征程。然后,它利用注意力机制丰富VAE网络的输出,从而展示模型聚类能力的顶点。在实验中,我们将该模型应用于一系列使用具有多模态特征(如AWA和CUB)的各种公共数据集的训练测试,并使用本地金融数据集进行验证。结果显著突出了该模型与公开可用数据集相比的出色性能,在此阶段超过了众多深度聚类网络。在金融数据领域,本论文中提出的ATT-VAE模型实现了超过0.7的聚类准确率指数,这一壮举明显优于深度聚类网络领域的同类模型。本文概述的方法提供了算法基础,并为智能金融数据治理和审查的未来领域提供了关键参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d35/11636689/8a2e0ed5377c/peerj-cs-10-1799-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验