Maessen Stefan J D, Lekanne Deprez Siebe, Vermeeren Pascal, van den Bersselaar Bart W L, Lutz Martin, Heuts Johan P A, Fonseca Guerra Célia, Palmans Anja R A
Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands.
Polym Chem. 2024 Dec 4;16(3):290-300. doi: 10.1039/d4py01296h. eCollection 2025 Jan 14.
Secondary interactions, such as hydrogen bonding or phase separation, can enhance the stability of dynamic covalent materials without compromising on desired dynamic properties. Here, we investigate the combination of multiple secondary interactions in dynamic covalent materials based on acylsemicarbazides (ASCs), with the aim of achieving tunable material properties. The effects of different ASC substituents on the dynamic covalent and hydrogen bonding capabilities were investigated in a small molecule study using a combined experimental and theoretical approach, and revealed the presence of cooperative hydrogen-bonding interactions in 2 directions in one of the derivatives. The different motifs were subsequently incorporated into polymeric materials. Combining ASC motifs capable of strong, multiple hydrogen bonding with a polydimethylsiloxane backbone introduces structure-dependent, ordered nanophase separation in polymeric materials. The thermo-mechanical properties of the materials reveal a strong dependance on the hydrogen-bonding structure and exact nature of the ASC bond. The dynamic behavior in bulk shows that bond exchange depends on the dissociation rate obtained from ASC model compounds, as well as the strength of the secondary interactions in these materials. Differences in hydrogen-bonding structures of the ASC motifs also cause differences in creep resistance of the materials. Interestingly, the materials with strong, ordered and cooperative hydrogen-bonded clusters show the highest creep resistance. Our results demonstrate that tuning both the dissociation rate and the secondary interactions by molecular design in dynamic covalent materials is important for controlling their thermal stability and creep resistance.
诸如氢键或相分离等二级相互作用,可以增强动态共价材料的稳定性,同时又不影响所需的动态性能。在此,我们研究了基于酰基氨基脲(ASC)的动态共价材料中多种二级相互作用的组合,旨在实现材料性能的可调谐性。在一项小分子研究中,采用实验与理论相结合的方法,研究了不同ASC取代基对动态共价和氢键能力的影响,结果表明其中一种衍生物在两个方向上存在协同氢键相互作用。随后将不同的基序引入到聚合物材料中。将能够形成强的、多重氢键的ASC基序与聚二甲基硅氧烷主链相结合,可在聚合物材料中引入与结构相关的有序纳米相分离。材料的热机械性能显示出对氢键结构和ASC键的确切性质有很强的依赖性。整体的动态行为表明,键交换取决于从ASC模型化合物获得的解离速率,以及这些材料中二级相互作用的强度。ASC基序的氢键结构差异也会导致材料抗蠕变性的差异。有趣的是,具有强的、有序的和协同氢键簇的材料显示出最高的抗蠕变性。我们的结果表明,通过分子设计调节动态共价材料中的解离速率和二级相互作用,对于控制其热稳定性和抗蠕变性很重要。