Suppr超能文献

血管内皮生长因子作为系统性硬化症的潜在生物标志物:一项系统评价和荟萃分析。

Vascular endothelial growth factor as a potential biomarker in systemic sclerosis: a systematic review and meta-analysis.

作者信息

Zinellu Angelo, Mangoni Arduino A

机构信息

Department of Biomedical Sciences, University of Sassari, Sassari, Italy.

Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.

出版信息

Front Immunol. 2024 Nov 28;15:1442913. doi: 10.3389/fimmu.2024.1442913. eCollection 2024.

Abstract

INTRODUCTION

Systemic sclerosis (SSc), a chronic autoimmune condition, is characterized by microvascular dysfunction, ineffective angiogenesis, and fibrosis. The identification of robust biomarkers reflecting these processes may assist in clinical management and lead to the discovery of new therapies. We sought to address this issue by conducting a systematic review and meta-analysis of studies investigating one such biomarker, vascular endothelial growth factor (VEGF), in SSc patients and healthy controls and in SSc patients with localized or diffuse disease, different video capillaroscopy patterns (early, active, or late), and presence or absence of complications.

METHODS

We searched PubMed, Scopus, and Web of Science from inception to 15 May 2024. We assessed the risk of bias and the certainty of evidence using the JBI checklist for analytical studies and GRADE, respectively.

RESULTS

In 42 eligible studies, compared to controls, patients with SSc had significantly higher plasma or serum VEGF concentrations (standard mean difference, SMD=0.93, 95% CI 0.71 to 1.15, p<0.001; moderate certainty). In further analyses, VEGF concentrations were significantly higher in SSc patients with diffused disease than those with localized disease (SMD=0.30, 95% CI 0.01 to 0.59, p=0.046; very low certainty), in patients with late vs. active video capillaroscopy pattern (SMD=0.35, 95% CI 0.09 to 0.61, p=0.008; very low certainty), and in patients with pulmonary hypertension than those without (SMD=0.93, 95% CI 0.34 to 1.53, p=0.002; very low certainty). By contrast, no significant differences were observed between SSc patients with and without digital ulcers, interstitial lung disease, and telangiectasias, whereas limited evidence was available for alveolitis. Meta-regression and subgroup analysis of studies investigating VEGF in SSc patients and controls showed no significant associations between the effects size and various patient and study characteristics, including SSc duration and use of corticosteroids, immunosuppressors and vasodilators. By contrast, significant associations were observed with the geographical location where the study was conducted.

DISCUSSION

The results of this systematic review and meta-analysis suggest that VEGF can be useful in the assessment and management of SSc and in the identification of novel therapeutic strategies in this patient group.

SYSTEMATIC REVIEW REGISTRATION

https://www.crd.york.ac.uk/prospero, identifier CRD42024552925.

摘要

引言

系统性硬化症(SSc)是一种慢性自身免疫性疾病,其特征为微血管功能障碍、无效血管生成和纤维化。识别反映这些过程的可靠生物标志物可能有助于临床管理,并促进新疗法的发现。我们试图通过对研究一种此类生物标志物——血管内皮生长因子(VEGF)的研究进行系统综述和荟萃分析来解决这一问题,这些研究涉及SSc患者与健康对照,以及患有局限性或弥漫性疾病、不同视频毛细血管镜检查模式(早期、活动期或晚期)和有无并发症的SSc患者。

方法

我们检索了从数据库建立至2024年5月15日的PubMed、Scopus和Web of Science。我们分别使用分析性研究的JBI清单和GRADE评估偏倚风险和证据的确定性。

结果

在42项符合条件的研究中,与对照组相比,SSc患者的血浆或血清VEGF浓度显著更高(标准化均数差,SMD = 0.93,95%置信区间0.71至1.15,p < 0.001;中等确定性)。在进一步分析中,弥漫性疾病的SSc患者的VEGF浓度显著高于局限性疾病患者(SMD = 0.30,95%置信区间0.01至0.59,p = 0.046;极低确定性),晚期视频毛细血管镜检查模式患者与活动期患者相比(SMD = 0.35,95%置信区间0.09至0.61,p = 0.008;极低确定性),以及有肺动脉高压的患者高于无肺动脉高压的患者(SMD = 0.93,95%置信区间0.34至1.53,p = 0.002;极低确定性)。相比之下,有和无指端溃疡、间质性肺疾病和毛细血管扩张的SSc患者之间未观察到显著差异,而关于肺泡炎的证据有限。对研究SSc患者和对照中VEGF的研究进行的Meta回归和亚组分析显示,效应量与各种患者和研究特征之间无显著关联,包括SSc病程以及皮质类固醇、免疫抑制剂和血管扩张剂的使用。相比之下,观察到与研究开展的地理位置存在显著关联。

讨论

该系统综述和荟萃分析的结果表明,VEGF可有助于SSc的评估和管理以及该患者群体新治疗策略的识别。

系统综述注册

https://www.crd.york.ac.uk/prospero,标识符CRD42024552925。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849c/11634811/8db2d5b38eb8/fimmu-15-1442913-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验