Hirschi Owen R, Felker Stephanie A, Rednam Surya P, Vallance Kelly L, Parsons D Williams, Roy Angshumoy, Cooper Gregory M, Plon Sharon E
Baylor College of Medicine, Houston, TX.
Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX.
Genet Med Open. 2024 May 15;2:101850. doi: 10.1016/j.gimo.2024.101850. eCollection 2024.
Clinical variant analysis pipelines likely have poor sensitivity to the effects on splicing from variants beyond 10 to 20 bases of exon-intron boundaries. Here, we demonstrate the value of SpliceAI to inform curation of rare variants previously classified as benign/likely benign (B/LB) under current guidelines.
Exome sequencing data from 576 pediatric cancer patients enrolled in the Texas KidsCanSeq study were filtered for intronic or synonymous variants absent from population databases, predicted to alter splicing via SpliceAI (>0.20), and scored >10 by combined annotation-dependent depletion. Rare synonymous or intronic B/LB variants in 61 genes submitted to ClinVar were also evaluated and RNA further assessed in monocyte-derived messenger RNA and/or an in vitro splice reporter assay in HEK-293T cells.
SpliceAI-supplemented analysis of the KidsCanSeq cohort revealed a intronic variant that resulted in missplicing in RNA from a proband with a personal and family history of pleuropulmonary blastoma but negative clinical exome and panel reports. Analysis of 34,188 B/LB ClinVar variants yielded 18 variants predicted to cause disrupted reading frames. Assessment of 8 variants ( = 4, = 2, = 2) by in vitro splicing assay demonstrated abnormal splice products (mean 66%; range 6% to 100%). When available, phenotypic information from submitting laboratories demonstrated associated tumors in 2 families (1 variant) and breast cancer in 3 families (2 variants).
Incorporation of SpliceAI in variant curation pipelines may improve classification of B/LB intronic and synonymous variants and highlight putative pathogenic variants for functional assays and RNA analysis, thereby increasing diagnostic yield for rare diseases.
临床变异分析流程可能对位于外显子-内含子边界10至20个碱基以外的变异对剪接的影响敏感性较差。在此,我们展示了SpliceAI在指导对当前指南下先前分类为良性/可能良性(B/LB)的罕见变异进行整理方面的价值。
对参加德克萨斯儿童癌症测序研究(Texas KidsCanSeq study)的576名儿科癌症患者的外显子组测序数据进行筛选,以找出人群数据库中不存在的内含子或同义变异,这些变异通过SpliceAI预测会改变剪接(>0.20),并且通过联合注释依赖的缺失法评分>10。还对提交给ClinVar的61个基因中的罕见同义或内含子B/LB变异进行了评估,并在单核细胞衍生的信使RNA和/或HEK-293T细胞中的体外剪接报告基因测定中进一步评估了RNA。
对KidsCanSeq队列进行SpliceAI补充分析发现了一个内含子变异,该变异导致一名患有胸膜肺母细胞瘤个人和家族史但临床外显子组和基因panel报告为阴性的先证者的RNA剪接错误。对34,188个B/LB ClinVar变异进行分析,发现有18个变异预计会导致阅读框中断。通过体外剪接测定对8个变异( = 4, = 2, = 2)进行评估,结果显示有异常剪接产物(平均66%;范围6%至100%)。在有可用信息时,提交实验室的表型信息显示,2个家族(1个变异)中有相关肿瘤,3个家族(2个变异)中有乳腺癌。
在变异整理流程中纳入SpliceAI可能会改善B/LB内含子和同义变异的分类,并突出用于功能测定和RNA分析的假定致病变异,从而提高罕见病的诊断率。