Suppr超能文献

综合计算分析表明,调控基因组元件与脊柱裂有关。

Integrative computational analyses implicate regulatory genomic elements contributing to spina bifida.

作者信息

Wolujewicz Paul, Aguiar-Pulido Vanessa, Thareja Gaurav, Suhre Karsten, Elemento Olivier, Finnell Richard H, Ross M Elizabeth

机构信息

Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY.

Department of Computer Science, University of Miami, Coral Gables, FL.

出版信息

Genet Med Open. 2024 Sep 14;2:101894. doi: 10.1016/j.gimo.2024.101894. eCollection 2024.

Abstract

PURPOSE

Spina bifida (SB) arises from complex genetic interactions that converge to interfere with neural tube closure. Understanding the precise patterns conferring SB risk requires a deep exploration of the genomic networks and molecular pathways that govern neurulation. This study aims to delineate genome-wide regulatory signatures underlying SB pathophysiology.

METHODS

An untargeted, genome-wide approach was used to interrogate regulatory regions for rare single-nucleotide and copy-number variants (rSNVs and rCNVs, respectively) predicted to affect gene expression, comparing results from SB patients with healthy controls. Qualifying variants were subjected to a deep learning prioritization framework to identify the most functionally relevant variants, as well as the likely target genes affected by these rare regulatory variants.

RESULTS

This ensemble of computational tools identified rSNVs in specific transcription factor binding sites (TFBSs) that distinguish SB cases from controls. rSNV enrichment was found in specific TFBSs, especially CCCTC-binding factor binding sites. These TFBSs were subjected to a deep learning prioritization framework to identify the most functionally relevant variants, as well as the likely target genes affected by these rSNVs. The functional pathways or modules implicated by these regulated genes serve protein transport, cilia assembly, and central nervous system development. Moreover, the detected rare copy-number variants in SB cases are positioned to disrupt gene regulatory networks and alter 3-dimensional genomic architectures, including brain-specific enhancers and topologically associated domain boundaries of relevant cell types.

CONCLUSION

Our study provides a resource for identifying and interpreting genomic regulatory DNA variant contributions to human SB genetic predisposition.

摘要

目的

脊柱裂(SB)源于复杂的基因相互作用,这些相互作用共同干扰神经管闭合。要了解赋予SB风险的精确模式,需要深入探索控制神经胚形成的基因组网络和分子途径。本研究旨在描绘SB病理生理学潜在的全基因组调控特征。

方法

采用非靶向的全基因组方法,对预测会影响基因表达的罕见单核苷酸和拷贝数变异(分别为rSNV和rCNV)的调控区域进行检测,将SB患者的结果与健康对照进行比较。对符合条件的变异进行深度学习优先级排序框架分析,以识别功能上最相关的变异,以及受这些罕见调控变异影响的可能靶基因。

结果

这一套计算工具在特定转录因子结合位点(TFBS)中识别出了区分SB病例与对照的rSNV。在特定的TFBS中发现了rSNV富集,尤其是CCCTC结合因子结合位点。对这些TFBS进行深度学习优先级排序框架分析,以识别功能上最相关的变异,以及受这些rSNV影响的可能靶基因。这些受调控基因涉及的功能途径或模块与蛋白质转运、纤毛组装和中枢神经系统发育有关。此外,在SB病例中检测到的罕见拷贝数变异定位在破坏基因调控网络并改变三维基因组结构,包括脑特异性增强子和相关细胞类型的拓扑相关结构域边界。

结论

我们的研究为识别和解释基因组调控DNA变异对人类SB遗传易感性的贡献提供了资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9500/11613821/0d07f94ec379/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验