Yu Yunfang, Cai Gengyi, Lin Ruichong, Wang Zehua, Chen Yongjian, Tan Yujie, He Zifan, Sun Zhuo, Ouyang Wenhao, Yao Herui, Zhang Kang
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou China.
Faculty of Medicine Macau University of Science and Technology Taipa Macao China.
MedComm (2020). 2024 Dec 11;5(12):e70023. doi: 10.1002/mco2.70023. eCollection 2024 Dec.
Breast cancer is the leading cancer among women, with a significant number experiencing recurrence and metastasis, thereby reducing survival rates. This study focuses on the role of long noncoding RNAs (lncRNAs) in breast cancer immunotherapy response. We conducted an analysis involving 1027 patients from Sun Yat-sen Memorial Hospital, Sun Yat-sen University, and The Cancer Genome Atlas, utilizing RNA sequencing and pathology whole-slide images. We employed unsupervised clustering to identify distinct lncRNA expression patterns and developed an AI-based pathology model using convolutional neural networks to predict immune-metabolic subtypes. Additionally, we created a multimodal model integrating lncRNA data, immune-cell scores, clinical information, and pathology images for prognostic prediction. Our findings revealed four unique immune-metabolic subtypes, and the AI model demonstrated high predictive accuracy, highlighting the significant impact of lncRNAs on antitumor immunity and metabolic states within the tumor microenvironment. The AI-based pathology model, DeepClinMed-IM, exhibited high accuracy in predicting these subtypes. Additionally, the multimodal model, DeepClinMed-PGM, integrating pathology images, lncRNA data, immune-cell scores, and clinical information, showed superior prognostic performance. In conclusion, these AI models provide a robust foundation for precise prognostication and the identification of potential candidates for immunotherapy, advancing breast cancer research and treatment strategies.
乳腺癌是女性中最常见的癌症,许多患者会出现复发和转移,从而降低生存率。本研究聚焦于长链非编码RNA(lncRNA)在乳腺癌免疫治疗反应中的作用。我们对来自中山大学孙逸仙纪念医院和癌症基因组图谱的1027名患者进行了分析,采用了RNA测序和病理全切片图像。我们运用无监督聚类来识别不同的lncRNA表达模式,并使用卷积神经网络开发了一个基于人工智能的病理模型来预测免疫代谢亚型。此外,我们创建了一个整合lncRNA数据、免疫细胞评分、临床信息和病理图像的多模态模型用于预后预测。我们的研究结果揭示了四种独特的免疫代谢亚型,并且人工智能模型显示出高预测准确性,突出了lncRNA对肿瘤微环境中的抗肿瘤免疫和代谢状态的重大影响。基于人工智能的病理模型DeepClinMed-IM在预测这些亚型方面表现出高精度。此外,整合病理图像、lncRNA数据、免疫细胞评分和临床信息的多模态模型DeepClinMed-PGM显示出卓越的预后性能。总之,这些人工智能模型为精确预后和识别免疫治疗的潜在候选者提供了坚实的基础,推动了乳腺癌研究和治疗策略的发展。