Fhoula Mouna, Khitouni Mohamed, Dammak Mohamed
Laboratoire de Physique Appliquée, Groupe des Matériaux Luminescents, Faculté des Sciences de Sfax, Département de Physique, Université de Sfax Sfax B.P. 3000 Tunisia
Department of Chemistry, College of Science, Qassim University Buraidah 51452 Saudi Arabia.
RSC Adv. 2024 Dec 12;14(53):39373-39380. doi: 10.1039/d4ra07853e. eCollection 2024 Dec 10.
Optical thermometry is a valuable non-contact technique for temperature measurement, especially in environments where traditional methods are impractical. Despite its advantages, enhancing the precision of optical thermometers remains a significant challenge. In this study, we explored the thermometric properties of NaSrPO phosphors co-doped with Er/Yb, synthesized a solid-state reaction method, for temperature sensing within the 200-440 K range under 980 nm excitation. Upconversion (UC) luminescence, observed in the visible spectrum, was analyzed using the fluorescence intensity ratio (FIR) method, focusing on both thermally coupled (TCLs) and non-thermally coupled (NTCLs) energy levels of Er/Yb. Specifically, the transitions H → I, S → I, and F → I were examined to calculate thermometric parameters. The maximum absolute sensitivity ( ) and relative sensitivity ( ) for the H → I to S → I transition were 0.0009 K and 0.6% K, respectively, while for the H → I to F → I transition, was 0.004 K, with a maximum of 1.14% K. Furthermore, by employing a luminescence intensity ratio technique based on TCLs (LIR), the minimum temperature uncertainty (δ) was found to be 1.31 K at 320 K. In contrast, the luminescence intensity ratio method based on NTCLs (LIR) yielded a much lower minimum δ value of 0.34 K at 200 K, indicating superior performance in terms of temperature resolution. These findings demonstrate that the LIR technique provides more sensitive and accurate temperature measurement compared to LIR. The excellent temperature resolution and sensitivity of NaSrPO:Er/Yb phosphors highlight their potential for highly accurate optical thermometry applications in scientific and industrial contexts.
光学测温法是一种用于温度测量的重要非接触技术,特别是在传统方法不实用的环境中。尽管具有优势,但提高光学温度计的精度仍然是一项重大挑战。在本研究中,我们探索了共掺杂Er/Yb的NaSrPO荧光粉的测温特性,采用固态反应法合成,用于在980 nm激发下200 - 440 K范围内的温度传感。利用荧光强度比(FIR)方法分析了在可见光谱中观察到的上转换(UC)发光,重点关注Er/Yb的热耦合(TCLs)和非热耦合(NTCLs)能级。具体而言,研究了H→I、S→I和F→I跃迁以计算测温参数。H→I到S→I跃迁的最大绝对灵敏度()和相对灵敏度()分别为0.0009 K和0.6% K,而对于H→I到F→I跃迁,为~0.004 K,最大为1.14% K。此外,通过采用基于TCLs的发光强度比技术(LIR),在320 K时发现最小温度不确定度(δ)为1.31 K。相比之下,基于NTCLs的发光强度比方法(LIR)在200 K时产生的最小δ值低得多,为0.34 K,表明在温度分辨率方面具有卓越性能。这些发现表明,与LIR相比,LIR技术提供了更灵敏和准确的温度测量。NaSrPO:Er/Yb荧光粉优异的温度分辨率和灵敏度突出了它们在科学和工业领域高精度光学测温应用中的潜力。