Suppr超能文献

在真实医院环境中使用大语言模型进行高效癌症登记编码:一项可行性研究。

Using Large Language Models for Efficient Cancer Registry Coding in the Real Hospital Setting: A Feasibility Study.

作者信息

Wang Chen-Kai, Ke Cheng-Rong, Huang Ming-Siang, Chong Inn-Wen, Yang Yi-Hsin, Tseng Vincent S, Dai Hong-Jie

机构信息

Department of Computer Science, National Yang Ming Chiao Tung University Hsinchu, 300093, Taiwan, ROC, Taiwan,

Intelligent System Laboratory, Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan, ROC, Taiwan,

出版信息

Pac Symp Biocomput. 2025;30:121-137. doi: 10.1142/9789819807024_0010.

Abstract

The primary challenge in reporting cancer cases lies in the labor-intensive and time-consuming process of manually reviewing numerous reports. Current methods predominantly rely on rule-based approaches or custom-supervised learning models, which predict diagnostic codes based on a single pathology report per patient. Although these methods show promising evaluation results, their biased outcomes in controlled settings may hinder adaption to real-world reporting workflows. In this feasibility study, we focused on lung cancer as a test case and developed an agentic retrieval-augmented generation (RAG) system to evaluate the potential of publicly available large language models (LLMs) for cancer registry coding. Our findings demonstrate that: (1) directly applying publicly available LLMs without fine-tuning is feasible for cancer registry coding; and (2) prompt engineering can significantly enhance the capability of pre-trained LLMs in cancer registry coding. The off-the-shelf LLM, combined with our proposed system architecture and basic prompts, achieved a macro-averaged F-score of 0.637 when evaluated on testing data consisting of patients' medical reports spanning 1.5 years since their first visit. By employing chain of thought (CoT) reasoning and our proposed coding item grouping, the system outperformed the baseline by 0.187 in terms of the macro-averaged F-score. These findings demonstrate the great potential of leveraging LLMs with prompt engineering for cancer registry coding. Our system could offer cancer registrars a promising reference tool to enhance their daily workflow, improving efficiency and accuracy in cancer case reporting.

摘要

报告癌症病例的主要挑战在于人工审查大量报告这一劳动强度大且耗时的过程。当前方法主要依赖基于规则的方法或定制监督学习模型,这些模型根据每位患者的单一病理报告来预测诊断代码。尽管这些方法显示出了有前景的评估结果,但它们在受控环境中的偏差结果可能会阻碍其适应现实世界的报告工作流程。在这项可行性研究中,我们将肺癌作为一个测试案例,开发了一个智能检索增强生成(RAG)系统,以评估公开可用的大语言模型(LLM)在癌症登记编码方面的潜力。我们的研究结果表明:(1)在不进行微调的情况下直接应用公开可用的LLM进行癌症登记编码是可行的;(2)提示工程可以显著提高预训练LLM在癌症登记编码方面的能力。现成的LLM与我们提出的系统架构和基本提示相结合,在对自首次就诊以来1.5年的患者医疗报告组成的测试数据进行评估时,宏观平均F分数达到了0.637。通过采用思维链(CoT)推理和我们提出的编码项目分组,该系统在宏观平均F分数方面比基线高出0.187。这些发现证明了利用带有提示工程的LLM进行癌症登记编码的巨大潜力。我们的系统可以为癌症登记员提供一个有前景的参考工具,以改进他们的日常工作流程,提高癌症病例报告的效率和准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验