Jasper Gielen, Smets Catherine, Vidts Noor, Schots Stef, Loes Stessens, Jaspers Arne, Romain Meeusen, Jean-Marie Aerts
M3-BIORES, Department of Biosystems, KU Leuven, Leuven, Belgium.
Department of Rehabilitation Science, KU Leuven, Leuven, Belgium.
Eur J Sport Sci. 2025 Jan;25(1):e12185. doi: 10.1002/ejsc.12185. Epub 2024 Dec 13.
With the development of power output sensors in the field of paddle sports and the ongoing advancements in dynamical analysis of exercise data, this study aims to model the measurements of external training intensity in relation to heart rate (HR) time-series during flat-water kayak sprint. Nine elite athletes performed a total of 47 interval training sessions with incremental intensity (light to (sub-) maximal effort levels). The data of HR, speed and power output were measured continuously and rating of perceived exertion and blood lactate concentration ([BLa]) were sampled at the end of each interval stage. Different autoregressive-exogenous (ARX) modelling configurations are tested, and we report on which combination of input (speed or power), model order (1st or 2nd), parameter estimation method (time-(in)variant) and training conditions (ergometer or on-water) is best suited for linking external to internal measures. Average model R values varied between 0.60 and 0.97, with corresponding average root mean square error values of 15.6 and 3.2 bpm. 1st order models with time-varying (TV) parameter estimates yield the best model performance (average R = 0.94). At the level of the individual athlete, the TV modelling features (i.e., the model parameters and derivatives such as time constant values) show significant repeated measure correlations in relation to measures of exercise intensity. In conclusion, the study provides a comprehensive description of how the dynamic relationship between external load and HR for sprint kayaking training data can be modelled. Such models can be used as a basis for improving training evaluation and optimisation.
随着桨类运动领域功率输出传感器的发展以及运动数据动态分析的不断进步,本研究旨在建立静水皮划艇冲刺过程中与心率(HR)时间序列相关的外部训练强度测量模型。九名精英运动员共进行了47次递增强度(从轻度到(次)最大努力水平)的间歇训练。连续测量心率、速度和功率输出数据,并在每个间歇阶段结束时采集主观用力程度评级和血乳酸浓度([BLa])。测试了不同的自回归外生(ARX)建模配置,并报告了哪种输入(速度或功率)、模型阶数(一阶或二阶)、参数估计方法(时变或非时变)和训练条件(测力计或水上)的组合最适合将外部测量与内部测量联系起来。平均模型R值在0.60至0.97之间变化,相应的平均均方根误差值为15.6和3.2次/分钟。具有时变(TV)参数估计的一阶模型产生了最佳的模型性能(平均R = 0.94)。在个体运动员层面,TV建模特征(即模型参数和导数,如时间常数)与运动强度测量之间显示出显著的重复测量相关性。总之,该研究全面描述了如何对皮划艇冲刺训练数据的外部负荷与心率之间的动态关系进行建模。此类模型可作为改进训练评估和优化的基础。