Suppr超能文献

通过S空位限制纳米丝实现基于TiO/MoSO的模拟RRAM中的均匀性、线性度和对称性增强。

Uniformity, Linearity, and Symmetry Enhancement in TiO/MoSO Based Analog RRAM via S-Vacancy Confined Nanofilament.

作者信息

Sun Dongdong, Zhu Xudong, Chen Shaochuan, Fang Haotian, Zhu Guixu, Lan Gongpeng, He Lixin, Shi Yuanyuan

机构信息

School of Microelectronics, University of Science and Technology of China, Hefei 230026, China.

Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China.

出版信息

Nano Lett. 2024 Dec 25;24(51):16283-16292. doi: 10.1021/acs.nanolett.4c04434. Epub 2024 Dec 13.

Abstract

Due to the stochastic formation of conductive filaments (CFs), analog resistive random-access memory (RRAM) struggles to simultaneously achieve low variability, high linearity, and symmetry in conductance tuning, thus complicating on-chip training and limiting versatility of RRAM based computing-in-memory (CIM) chips. In this study, we present a simple and effective approach using monolayer (ML) MoS as interlayer to control the CFs formation in TiO switching layer. The limited S-vacancies (S) in MoSO interlayer can further confine the position, size, and quantity of CFs, resulting in a highly uniform and symmetrical switching behavior. The set and reset voltages ( and ) in TiO/MoSO based RRAM are symmetric, with cycle-to-cycle variations of 1.28% and 1.7%, respectively. Moreover, high conductance tuning linearity and 64-level switching capabilities are achieved, which facilitate high accuracy (93.02%) on-chip training. This method mitigates the device nonidealities of analog RRAM through S confined CFs, accelerating the development of RRAM based CIM chips.

摘要

由于导电细丝(CFs)的随机形成,模拟电阻式随机存取存储器(RRAM)难以同时实现低变异性、高线性度和电导调谐的对称性,从而使片上训练变得复杂,并限制了基于RRAM的内存计算(CIM)芯片的通用性。在本研究中,我们提出了一种简单有效的方法,使用单层(ML)MoS作为中间层来控制TiO开关层中CFs的形成。MoS2中间层中有限的S空位(S)可以进一步限制CFs的位置、大小和数量,从而产生高度均匀和对称的开关行为。基于TiO2/MoS2的RRAM中的设置和重置电压(Vset和Vreset)是对称的,周期到周期的变化分别为1.28%和1.7%。此外,还实现了高电导调谐线性度和64级开关能力,这有助于实现高精度(93.02%)的片上训练。该方法通过S限制的CFs减轻了模拟RRAM的器件非理想性,加速了基于RRAM的CIM芯片的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验