Digital Health-Machine Learning Research Group, Digital Health Center, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany.
Department of Computer Science, TU Kaiserslautern, 67663 Kaiserslautern, Germany.
Bioinformatics. 2022 Jul 11;38(14):3621-3628. doi: 10.1093/bioinformatics/btac369.
Medical images can provide rich information about diseases and their biology. However, investigating their association with genetic variation requires non-standard methods. We propose transferGWAS, a novel approach to perform genome-wide association studies directly on full medical images. First, we learn semantically meaningful representations of the images based on a transfer learning task, during which a deep neural network is trained on independent but similar data. Then, we perform genetic association tests with these representations.
We validate the type I error rates and power of transferGWAS in simulation studies of synthetic images. Then we apply transferGWAS in a genome-wide association study of retinal fundus images from the UK Biobank. This first-of-a-kind GWAS of full imaging data yielded 60 genomic regions associated with retinal fundus images, of which 7 are novel candidate loci for eye-related traits and diseases.
Our method is implemented in Python and available at https://github.com/mkirchler/transferGWAS/.
Supplementary data are available at Bioinformatics online.
医学图像可以提供有关疾病及其生物学的丰富信息。然而,要研究它们与遗传变异的关联,需要采用非标准方法。我们提出了 transferGWAS,这是一种直接在全医学图像上进行全基因组关联研究的新方法。首先,我们基于迁移学习任务学习图像的语义上有意义的表示,在此期间,深度神经网络在独立但相似的数据上进行训练。然后,我们使用这些表示进行遗传关联测试。
我们在对合成图像的模拟研究中验证了 transferGWAS 的Ⅰ类错误率和功效。然后,我们将 transferGWAS 应用于英国生物库的视网膜眼底图像的全基因组关联研究。这是首次对全成像数据进行的全基因组关联研究,产生了 60 个与视网膜眼底图像相关的基因组区域,其中 7 个是与眼睛相关特征和疾病的新候选基因座。
我们的方法是用 Python 实现的,可在 https://github.com/mkirchler/transferGWAS/ 上获得。
补充数据可在生物信息学在线获得。