Suppr超能文献

ClustAll:一个用于复杂疾病患者分层的R软件包。

ClustAll: An R package for patient stratification in complex diseases.

作者信息

Ortega-Legarreta Asier, Palomino-Echeverria Sara, Huergo Estefania, Lagani Vincenzo, Kiani Narsis A, Rautou Pierre-Emmanuel, Picola Nuria Planell, Tegner Jesper, Gomez-Cabrero David

机构信息

Unit of Translational Bioinformatics, Navarrabiomed-Fundación Miguel Servet, Universidad Publica de Navarra (UPNA), IdiSNA, Pamplona, Spain.

Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

出版信息

PLoS Comput Biol. 2024 Dec 13;20(12):e1012656. doi: 10.1371/journal.pcbi.1012656. eCollection 2024 Dec.

Abstract

In the era of precision medicine, it is necessary to understand heterogeneity among patients with complex diseases to improve personalized prevention and management strategies. Here, we introduce ClustAll, a Bioconductor package designed for unsupervised patient stratification using clinical data. ClustAll is based on the previously validated methodology ClustAll, a clustering framework that effectively handles intricacies in clinical data, including mixed data types, missing values, and collinearity. Additionally, ClustAll stands out in its ability to identify multiple patient stratifications within the same population while ensuring their robustness. The updated implementation of ClustAll features S4 classes, parallel computing for enhanced computational efficiency, and user-friendly tools for exploring and comparing stratifications against clinical phenotypes. The performance of ClustAll has been validated using two public clinical datasets, confirming its effectiveness in patient stratification and highlighting its potential impact on clinical management. In summary, ClustAll is a powerful tool for patient stratification in personalized medicine.

摘要

在精准医学时代,有必要了解复杂疾病患者之间的异质性,以改进个性化预防和管理策略。在此,我们介绍ClustAll,这是一个用于使用临床数据进行无监督患者分层的Bioconductor软件包。ClustAll基于先前经过验证的方法ClustAll,这是一个聚类框架,可有效处理临床数据中的复杂情况,包括混合数据类型、缺失值和共线性。此外,ClustAll在能够在同一人群中识别多个患者分层并确保其稳健性方面表现突出。ClustAll的更新实现具有S4类、用于提高计算效率的并行计算以及用于探索和比较分层与临床表型的用户友好工具。ClustAll的性能已通过两个公共临床数据集进行了验证,证实了其在患者分层方面的有效性,并突出了其对临床管理的潜在影响。总之,ClustAll是个性化医学中用于患者分层的强大工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382e/11676920/01ee552cecad/pcbi.1012656.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验