Suppr超能文献

癌症诊断的一种新方法:整合全息显微医学成像与深度学习技术——挑战与未来趋势。

A novel approach in cancer diagnosis: integrating holography microscopic medical imaging and deep learning techniques-challenges and future trends.

作者信息

Nazir Asifa, Hussain Ahsan, Singh Mandeep, Assad Assif

机构信息

Department of Computer Science and Engineering, Islamic University of Science and Technology, Awantipora, Pulwama, 192122, J&K, India.

Department of Physics, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, J&K, India †.

出版信息

Biomed Phys Eng Express. 2025 Jan 29;11(2). doi: 10.1088/2057-1976/ad9eb7.

Abstract

Medical imaging is pivotal in early disease diagnosis, providing essential insights that enable timely and accurate detection of health anomalies. Traditional imaging techniques, such as Magnetic Resonance Imaging (MRI), Computer Tomography (CT), ultrasound, and Positron Emission Tomography (PET), offer vital insights into three-dimensional structures but frequently fall short of delivering a comprehensive and detailed anatomical analysis, capturing only amplitude details. Three-dimensional holography microscopic medical imaging provides a promising solution by capturing the amplitude (brightness) and phase (structural information) details of biological structures. In this study, we investigate the novel collaborative potential of Deep Learning (DL) and holography microscopic phase imaging for cancer diagnosis. The study comprehensively examines existing literature, analyzes advancements, identifies research gaps, and proposes future research directions in cancer diagnosis through the integrated Quantitative Phase Imaging (QPI) and DL methodology. This novel approach addresses a critical limitation of traditional imaging by capturing detailed structural information, paving the way for more accurate diagnostics. The proposed approach comprises tissue sample collection, holographic image scanning, preprocessing in case of imbalanced datasets, and training on annotated datasets using DL architectures like U-Net and Vision Transformer(ViT's). Furthermore, sophisticated concepts in DL, like the incorporation of Explainable AI (XAI) techniques, are suggested for comprehensive disease diagnosis and identification. The study thoroughly investigates the advantages of integrating holography imaging and DL for precise cancer diagnosis. Additionally, meticulous insights are presented by identifying the challenges associated with this integration methodology.

摘要

医学成像在疾病早期诊断中起着关键作用,它提供了重要的见解,能够及时、准确地检测出健康异常情况。传统成像技术,如磁共振成像(MRI)、计算机断层扫描(CT)、超声和正电子发射断层扫描(PET),能对三维结构提供重要见解,但往往无法提供全面而详细的解剖分析,仅能捕捉幅度细节。三维全息显微医学成像通过捕捉生物结构的幅度(亮度)和相位(结构信息)细节提供了一个有前景的解决方案。在本研究中,我们探究深度学习(DL)与全息显微相位成像在癌症诊断方面的新型协同潜力。该研究全面审视现有文献,分析进展情况,找出研究差距,并通过整合定量相位成像(QPI)和DL方法提出癌症诊断的未来研究方向。这种新方法通过捕捉详细的结构信息解决了传统成像的一个关键局限性,为更准确的诊断铺平了道路。所提出的方法包括组织样本采集、全息图像扫描、对不平衡数据集进行预处理,以及使用如U-Net和视觉Transformer(ViT)等DL架构在带注释的数据集上进行训练。此外,还建议在DL中采用复杂的概念,如纳入可解释人工智能(XAI)技术,以进行全面的疾病诊断和识别。该研究深入探讨了将全息成像与DL整合用于精确癌症诊断的优势。此外,通过识别与这种整合方法相关的挑战,给出了细致的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验