Suppr超能文献

一种基于轻量级自适应空间通道注意力高效网络B3的生成对抗网络方法,用于从不完整采样数据中重建磁共振图像。

A lightweight adaptive spatial channel attention efficient net B3 based generative adversarial network approach for MR image reconstruction from under sampled data.

作者信息

Kumar Penta Anil, Gunasundari Ramalingam

机构信息

Dept. of Electronics and Communication Engineering, Puducherry Technological University, Puducherry 605014, India.

Dept. of Electronics and Communication Engineering, Puducherry Technological University, Puducherry 605014, India.

出版信息

Magn Reson Imaging. 2025 Apr;117:110281. doi: 10.1016/j.mri.2024.110281. Epub 2024 Dec 11.

Abstract

Magnetic Resonance Imaging (MRI) stands out as a notable non-invasive method for medical imaging assessments, widely employed in early medical diagnoses due to its exceptional resolution in portraying soft tissue structures. However, the MRI method faces challenges with its inherently slow acquisition process, stemming from the sequential sampling in k-space and limitations in traversal speed due to physiological and hardware constraints. Compressed Sensing in MRI (CS-MRI) accelerates image acquisition by utilizing greatly under-sampled k-space information. Despite its advantages, conventional CS-MRI encounters issues such as sluggish iterations and artefacts at higher acceleration factors. Recent advancements integrate deep learning models into CS-MRI, inspired by successes in various computer vision domains. It has drawn significant attention from the MRI community because of its great potential for image reconstruction from undersampled k-space data in fast MRI. This paper proposes a lightweight Adaptive Spatial-Channel Attention EfficientNet B3-based Generative Adversarial Network (ASCA-EffNet GAN) for fast, high-quality MR image reconstruction from greatly under-sampled k-space information in CS-MRI. The proposed GAN employs a U-net generator with ASCA-based EfficientNet B3 for encoder blocks and a ResNet decoder. The discriminator is a binary classifier with ASCA-based EfficientNet B3, a fully connected layer and a sigmoid layer. The EfficientNet B3 utilizes a compound scaling strategy that achieves a balance amongst model depth, width, and resolution, resulting in optimal performance with a reduced number of parameters. Furthermore, the adaptive attention mechanisms in the proposed ASCA-EffNet GAN effectively capture spatial and channel-wise features, contributing to detailed anatomical structure reconstruction. Experimental evaluations on the dataset demonstrate ASCA-EffNet GAN's superior performance across various metrics, surpassing conventional reconstruction methods. Hence, ASCA-EffNet GAN showcases remarkable reconstruction capabilities even under high under-sampling rates, making it suitable for clinical applications.

摘要

磁共振成像(MRI)是一种显著的非侵入性医学成像评估方法,因其在描绘软组织结构方面具有出色的分辨率而广泛应用于早期医学诊断。然而,MRI方法因其固有的缓慢采集过程而面临挑战,这源于k空间中的顺序采样以及由于生理和硬件限制导致的遍历速度受限。MRI中的压缩感知(CS-MRI)通过利用大幅欠采样的k空间信息来加速图像采集。尽管具有优势,但传统的CS-MRI在较高加速因子下会遇到诸如迭代缓慢和伪影等问题。最近的进展将深度学习模型集成到CS-MRI中,这受到了各个计算机视觉领域成功的启发。由于其在快速MRI中从欠采样k空间数据进行图像重建的巨大潜力,它引起了MRI社区的极大关注。本文提出了一种基于轻量级自适应空间通道注意力高效网络B3的生成对抗网络(ASCA-EffNet GAN),用于从CS-MRI中大幅欠采样的k空间信息进行快速、高质量的MR图像重建。所提出的GAN采用了一个U型网络生成器,其编码器块采用基于ASCA的高效网络B3,解码器采用ResNet。判别器是一个基于ASCA的高效网络B3、一个全连接层和一个Sigmoid层的二分类器。高效网络B3采用复合缩放策略,在模型深度、宽度和分辨率之间实现平衡,从而在减少参数数量的情况下实现最佳性能。此外,所提出的ASCA-EffNet GAN中的自适应注意力机制有效地捕获空间和通道特征,有助于详细的解剖结构重建。在数据集上的实验评估表明,ASCA-EffNet GAN在各种指标上具有卓越的性能,超过了传统的重建方法。因此,即使在高欠采样率下,ASCA-EffNet GAN也展示出卓越的重建能力,使其适用于临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验