Suppr超能文献

DBGAN:一种用于欠采样 MRI 重建的双分支生成对抗网络。

DBGAN: A dual-branch generative adversarial network for undersampled MRI reconstruction.

机构信息

Center for Biomedical Image, University of Science and Technology of China, Hefei, Anhui 230026, China.

Center for Biomedical Image, University of Science and Technology of China, Hefei, Anhui 230026, China.

出版信息

Magn Reson Imaging. 2022 Jun;89:77-91. doi: 10.1016/j.mri.2022.03.003. Epub 2022 Mar 24.

Abstract

Compressed sensing magnetic resonance imaging (CS-MRI) greatly accelerates the acquisition process and yield considerable reconstructed images. Deep learning was introduced into CS-MRI to further speed up the reconstruction process and improve the image quality. Recently, generative adversarial network (GAN) using two-stage cascaded U-Net structure as generator has been proven to be effective in MRI reconstruction. However, previous cascaded structure was limited to few feature information propagation channels thus may lead to information missing. In this paper, we proposed a GAN-based model, DBGAN, for MRI reconstruction from undersampled k-space data. The model uses cross-stage skip connection (CSSC) between two end-to-end cascaded U-Net in our generator to widen the channels of feature propagation. To avoid discrepancy between training and inference, we replaced classical batch normalization (BN) with instance normalization (IN) . A stage loss is involved in the loss function to boost the training performance. In addition, a bilinear interpolation decoder branch is introduced in the generator to supplement the missing information of the deconvolution decoder. Tested under five variant patterns with four undersampling rates on different modality of MRI data, the quantitative results show that DBGAN model achieves mean improvements of 3.65 dB in peak signal-to-noise ratio (PSNR) and 0.016 in normalized mean square error (NMSE) compared with state-of-the-art GAN-based methods on T1-Weighted brain dataset from MICCAI 2013 grand challenge. The qualitative visual results show that our method can reconstruct considerable images on brain and knee MRI data from different modality. Furthermore, DBGAN is light and fast - the model parameters are fewer than half of state-of-the-art GAN-based methods and each 256 × 256 image is reconstructed in 60 milliseconds, which is suitable for real-time processing.

摘要

压缩感知磁共振成像(CS-MRI)极大地加速了采集过程,并产生了相当数量的重建图像。深度学习被引入 CS-MRI 中,以进一步加快重建过程并提高图像质量。最近,使用两级级联 U-Net 结构作为生成器的生成对抗网络(GAN)已被证明在 MRI 重建中非常有效。然而,以前的级联结构仅限于少数特征信息传播通道,因此可能导致信息丢失。在本文中,我们提出了一种基于 GAN 的模型,即 DBGAN,用于从欠采样 k 空间数据重建 MRI。该模型在生成器中使用两个端到端级联 U-Net 之间的交叉阶段跳过连接(CSSC)来拓宽特征传播通道。为了避免训练和推理之间的差异,我们用实例归一化(IN)替换了经典的批量归一化(BN)。在损失函数中引入了一个阶段损失,以提高训练性能。此外,在生成器中引入了双线性插值解码器分支,以补充去卷积解码器的缺失信息。在不同模态的 MRI 数据上的五种变体模式下,在四个欠采样率下进行测试,定量结果表明,与 2013 年 MICCAI 大脑数据集上基于 GAN 的最先进方法相比,DBGAN 模型在峰值信噪比(PSNR)方面平均提高了 3.65dB,归一化均方误差(NMSE)提高了 0.016。定性视觉结果表明,我们的方法可以对不同模态的大脑和膝盖 MRI 数据进行相当数量的重建。此外,DBGAN 很轻很快——模型参数比最先进的基于 GAN 的方法少一半,每个 256×256 图像的重建时间为 60 毫秒,适用于实时处理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验