Suppr超能文献

使用光可切换鞘氨醇对鞘脂生物合成进行光学控制。

Optical control of sphingolipid biosynthesis using photoswitchable sphingosines.

作者信息

Kol Matthijs, Novak Alexander J E, Morstein Johannes, Schröer Christian, Sokoya Tolulope, Mensing Svenja, Korneev Sergei M, Trauner Dirk, Holthuis Joost C M

机构信息

Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany.

Department of Chemistry, New York University, New York, New York, USA.

出版信息

J Lipid Res. 2025 Jan;66(1):100724. doi: 10.1016/j.jlr.2024.100724. Epub 2024 Dec 11.

Abstract

Sphingolipid metabolism comprises a complex interconnected web of enzymes, metabolites, and modes of regulation that influence a wide range of cellular and physiological processes. Deciphering the biological relevance of this network is challenging as numerous intermediates of sphingolipid metabolism are short-lived molecules with often opposing biological activities. Here, we introduce clickable, azobenzene-containing sphingosines, termed caSphs, as light-sensitive substrates for sphingolipid biosynthesis. Photo-isomerization of the azobenzene moiety enables reversible switching between a straight trans- and curved cis-form of the lipid's hydrocarbon tail. Combining in vitro enzyme assays with metabolic labeling studies, we demonstrate that trans-to-cis isomerization of caSphs profoundly stimulates their metabolic conversion by ceramide synthases and downstream sphingomyelin synthases. These light-induced changes in sphingolipid production rates are acute, reversible, and can be implemented with great efficiency in living cells. Our findings establish caSphs as versatile tools for manipulating sphingolipid biosynthesis and function with the spatiotemporal precision of light.

摘要

鞘脂代谢由一个复杂的、相互关联的酶、代谢物和调节模式网络组成,这些因素会影响广泛的细胞和生理过程。由于鞘脂代谢的许多中间体都是寿命短暂的分子,且其生物活性往往相反,因此解读该网络的生物学相关性具有挑战性。在此,我们引入了可点击的、含偶氮苯的鞘氨醇(称为caSphs),作为鞘脂生物合成的光敏感底物。偶氮苯部分的光异构化能够使脂质烃尾在直的反式和顺式弯曲形式之间进行可逆转换。通过将体外酶分析与代谢标记研究相结合,我们证明caSphs从反式到顺式的异构化能极大地刺激它们被神经酰胺合成酶和下游鞘磷脂合成酶进行代谢转化。这些鞘脂生成速率的光诱导变化是快速且可逆的,并且可以在活细胞中高效实现。我们的研究结果将caSphs确立为用于以光的时空精度操纵鞘脂生物合成和功能的通用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e390/11782902/f77400722174/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验