Suppr超能文献

利用有氧生物电合成生产微生物生物质的效率与工艺开发

Efficiency and process development for microbial biomass production using oxic bioelectrosynthesis.

作者信息

Rominger Leonie, Hackbarth Max, Jung Tobias, Scherzinger Marvin, Rosa Luis F M, Horn Harald, Kaltschmitt Martin, Picioreanu Cristian, Gescher Johannes

机构信息

Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstraße 12 (F), 21073 Hamburg, Germany.

Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.

出版信息

Trends Biotechnol. 2025 Mar;43(3):673-695. doi: 10.1016/j.tibtech.2024.11.005. Epub 2024 Dec 12.

Abstract

Autotrophic microbial electrosynthesis (MES) processes are mainly based on organisms that rely on carbon dioxide (CO) as an electron acceptor and typically have low biomass yields. However, there are few data on the process and efficiencies of oxic MES (OMES). In this study, we used the knallgas bacterium Kyrpidia spormannii to investigate biomass formation and energy efficiency of cathode-dependent growth. The study revealed that the process can be carried out with the same electron efficiency as conventional gas fermentation, but overcomes disadvantages, such as the use of explosive gas mixtures. When accounting only for the electron input via electrical energy, a solar energy demand of 67.89 kWh kg dry biomass was determined. While anaerobic MES is ideally suited to produce methane, short-chain alcohols, and carboxylic acids, its aerobic counterpart could extend this important range of applications to not only protein for use in the food and feed sector, but also further complex products.

摘要

自养型微生物电合成(MES)过程主要基于依靠二氧化碳(CO)作为电子受体的生物体,且通常生物量产量较低。然而,关于有氧MES(OMES)的过程和效率的数据很少。在本研究中,我们使用克氏产气杆菌Kyrpidia spormannii来研究阴极依赖性生长的生物量形成和能量效率。研究表明,该过程可以以与传统气体发酵相同的电子效率进行,但克服了诸如使用爆炸性气体混合物等缺点。仅考虑通过电能的电子输入时,确定生产1千克干生物量的太阳能需求为67.89千瓦时。虽然厌氧MES非常适合生产甲烷、短链醇和羧酸,但其有氧对应物不仅可以将这一重要的应用范围扩展到食品和饲料行业使用的蛋白质,还可以扩展到更复杂的产品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验