Pan Xue, Zhao Yun, Li Yucong, Chen Jiajia, Zhang Wenya, Yang Ling, Xiong Yuanyi Zhou, Ying Yuqing, Xu Hao, Zhang Yuhong, Gao Chong, Sun Yuhan, Li Nan, Chen Liangyi, Chen Zhixing, Lei Kai
College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
Nat Commun. 2024 Dec 13;15(1):10681. doi: 10.1038/s41467-024-54720-1.
Tissue regeneration is a complex process involving large changes in cell proliferation, fate determination, and differentiation. Mitochondrial dynamics and metabolism play a crucial role in development and wound repair, but their function in large-scale regeneration remains poorly understood. Planarians offer an excellent model to investigate this process due to their remarkable regenerative abilities. In this study, we examine mitochondrial dynamics during planarian regeneration. We find that knockdown of the mitochondrial fusion gene, opa1, impairs both tissue regeneration and stem cell pluripotency. Interestingly, the regeneration defects caused by opa1 knockdown are rescued by simultaneous knockdown of the mitochondrial fission gene, drp1, which partially restores mitochondrial dynamics. Furthermore, we discover that Mito stem cells exhibit an enrichment of pluripotency due to their fate choices at earlier stages. Transcriptomic analysis reveals the delicate mitonuclear balance in metabolism and mitochondrial proteins in regeneration, controlled by mitochondrial dynamics. These findings highlight the importance of maintaining mitochondrial dynamics in large-scale tissue regeneration and suggest the potential for manipulating these dynamics to enhance stem cell functionality and regenerative processes.
组织再生是一个复杂的过程,涉及细胞增殖、命运决定和分化的巨大变化。线粒体动力学和代谢在发育和伤口修复中起着关键作用,但其在大规模再生中的功能仍知之甚少。涡虫因其卓越的再生能力,为研究这一过程提供了一个绝佳的模型。在本研究中,我们研究了涡虫再生过程中的线粒体动力学。我们发现,线粒体融合基因opa1的敲低会损害组织再生和干细胞多能性。有趣的是,通过同时敲低线粒体分裂基因drp1可以挽救由opa1敲低引起的再生缺陷,这部分恢复了线粒体动力学。此外,我们发现线粒体干细胞由于其在早期阶段的命运选择而表现出多能性的富集。转录组分析揭示了再生过程中代谢和线粒体蛋白中微妙的线粒体-核平衡,这是由线粒体动力学控制的。这些发现突出了维持线粒体动力学在大规模组织再生中的重要性,并暗示了操纵这些动力学以增强干细胞功能和再生过程的潜力。