Dallinger Reinhard, Pedrini-Martha Veronika, Burdisso Maria Lucia, Capdevila Mercè, Palacios Oscar, Albalat Ricard
Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain.
Protein Sci. 2025 Jan;34(1):e5247. doi: 10.1002/pro.5247.
Protein modularity is acknowledged for promoting the emergence of new protein variants via domain rearrangements. Metallothioneins (MTs) offer an excellent model system for experimentally examining the consequences of domain rearrangements due to the possibility to assess the functional properties of native and artificially created variants using spectroscopic methods and metal tolerance assays. In this study, we have investigated the functional properties of AbiMT4 from the snail Alinda biplicata (Gastropoda, Mollusca), a large MT comprising 10 putative β domains (β3β1), alongside four artificially designed variants differing in domain number, type, or order. Our findings reveal that AbiMT4 is a cadmium-selective protein with a high metal-binding capacity, characterized by structurally and functionally independent domains repeated in tandem along the protein. Our results indicate that due to its modular organization, AbiMT4 remains functional even when the number, type, and order of the domains are significantly altered. Furthermore, we demonstrate that the metal-binding properties of AbiMT4 are not dictated by the overall architecture of the protein but primarily arise from the properties of each individual domain. Using MTs as example, this work provides empirical evidence that domain rearrangements are an effective strategy for exploring new viable sequences and creating novel protein variants subject to adaptive selection. Thus, our study highlights the importance of the modular structure of proteins, as increasing their functional flexibility enhances their evolvability. Additionally, our work demonstrates a simple way to design and model new proteins for predefined functions.
蛋白质模块化被认为可通过结构域重排促进新蛋白质变体的出现。金属硫蛋白(MTs)提供了一个出色的模型系统,可用于通过光谱方法和金属耐受性测定来评估天然和人工创建变体的功能特性,从而通过实验研究结构域重排的后果。在本研究中,我们研究了来自蜗牛双线阿林达(腹足纲,软体动物)的AbiMT4的功能特性,AbiMT4是一种大型MT,包含10个假定的β结构域(β3β1),以及四个在结构域数量、类型或顺序上不同的人工设计变体。我们的研究结果表明,AbiMT4是一种具有高金属结合能力的镉选择性蛋白质,其特征是沿着蛋白质串联重复的结构和功能独立的结构域。我们的结果表明,由于其模块化组织,即使结构域的数量、类型和顺序发生显著改变,AbiMT4仍保持功能。此外,我们证明AbiMT4的金属结合特性不是由蛋白质的整体结构决定的,而是主要源于每个单独结构域的特性。以MTs为例,这项工作提供了经验证据,表明结构域重排是探索新的可行序列和创建受适应性选择的新型蛋白质变体的有效策略。因此,我们的研究强调了蛋白质模块化结构的重要性,因为增加其功能灵活性可增强其进化能力。此外,我们的工作展示了一种为预定义功能设计和建模新蛋白质的简单方法。