Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu, 09042, Monserrato, (CA), Italy.
Nat Commun. 2020 Nov 4;11(1):5565. doi: 10.1038/s41467-020-19397-2.
Resistance-nodulation-division efflux pumps play a key role in inherent and evolved multidrug resistance in bacteria. AcrB, a prototypical member of this protein family, extrudes a wide range of antimicrobial agents out of bacteria. Although high-resolution structures exist for AcrB, its conformational fluctuations and their putative role in function are largely unknown. Here, we determine these structural dynamics in the presence of substrates using hydrogen/deuterium exchange mass spectrometry, complemented by molecular dynamics simulations, and bacterial susceptibility studies. We show that an efflux pump inhibitor potentiates antibiotic activity by restraining drug-binding pocket dynamics, rather than preventing antibiotic binding. We also reveal that a drug-binding pocket substitution discovered within a multidrug resistant clinical isolate modifies the plasticity of the transport pathway, which could explain its altered substrate efflux. Our results provide insight into the molecular mechanism of drug export and inhibition of a major multidrug efflux pump and the directive role of its dynamics.
耐药-结节-分裂外排泵在细菌固有和进化的多药耐药中发挥着关键作用。AcrB 是该蛋白家族的典型成员,可将多种抗菌剂从细菌中排出。尽管已经存在 AcrB 的高分辨率结构,但它的构象波动及其在功能中的潜在作用在很大程度上尚不清楚。在这里,我们使用氢/氘交换质谱法确定了在存在底物的情况下的这些结构动力学,并辅以分子动力学模拟和细菌敏感性研究。我们表明,外排泵抑制剂通过限制药物结合口袋的动力学来增强抗生素的活性,而不是防止抗生素结合。我们还揭示了在多药耐药临床分离株中发现的药物结合口袋取代改变了转运途径的可塑性,这可以解释其改变的底物外排。我们的研究结果为药物外排和主要多药外排泵的抑制的分子机制提供了深入的了解,并指出了其动力学的指导作用。