Reinecke David, Maarouf Nader, Smith Andrew, Alber Daniel, Markert John, Goff Nicolas K, Hollon Todd C, Chowdury Asadur, Jiang Cheng, Hou Xinhai, Meissner Anna-Katharina, Fürtjes Gina, Ruge Maximilian I, Ruess Daniel, Stehle Thomas, Al-Shughri Abdulkader, Körner Lisa I, Widhalm Georg, Roetzer-Pejrimovsky Thomas, Golfinos John G, Snuderl Matija, Neuschmelting Volker, Orringer Daniel A
Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York, USA.
Neuro Oncol. 2025 Jun 21;27(5):1297-1310. doi: 10.1093/neuonc/noae270.
Accurate intraoperative diagnosis is crucial for differentiating between primary central nervous system (CNS) lymphoma (PCNSL) and other CNS entities, guiding surgical decision-making, but represents significant challenges due to overlapping histomorphological features, time constraints, and differing treatment strategies. We combined stimulated Raman histology (SRH) with deep learning to address this challenge.
We imaged unprocessed, label-free tissue samples intraoperatively using a portable Raman scattering microscope, generating virtual H&E-like images within <3 min. We developed a deep learning pipeline called RapidLymphoma based on a self-supervised learning strategy to (1) detect PCNSL, (2) differentiate from other CNS entities, and (3) test the diagnostic performance in a prospective international multicenter cohort and 2 additional independent test cohorts. We trained on 54 000 SRH patch images sourced from surgical resections and stereotactic-guided biopsies, including various CNS neoplastic/nonneoplastic lesions. Training and test data were collected from 4 tertiary international medical centers. The final histopathological diagnosis served as ground truth.
In the prospective test cohort of PCNSL and non-PCNSL entities (n = 160), RapidLymphoma achieved an overall balanced accuracy of 97.81% ± 0.91, non-inferior to frozen section analysis in detecting PCNSL (100% vs. 77.77%). The additional test cohorts (n = 420, n = 59) reached balanced accuracy rates of 95.44% ± 0.74 and 95.57% ± 2.47 in differentiating IDH-wildtype diffuse gliomas and various brain metastasis from PCNSL. Visual heatmaps revealed RapidLymphoma's capabilities to detect class-specific histomorphological key features.
RapidLymphoma proves reliable and valid for intraoperative PCNSL detection and differentiation from other CNS entities. It provides visual feedback within 3 min, enabling fast clinical decision-making and subsequent treatment strategy planning.
准确的术中诊断对于区分原发性中枢神经系统(CNS)淋巴瘤(PCNSL)与其他中枢神经系统病变、指导手术决策至关重要,但由于组织形态学特征重叠、时间限制和不同的治疗策略,这一过程面临重大挑战。我们将受激拉曼组织学(SRH)与深度学习相结合来应对这一挑战。
我们使用便携式拉曼散射显微镜在术中对未处理的、无标记的组织样本进行成像,在不到3分钟的时间内生成类似苏木精-伊红(H&E)染色的虚拟图像。我们基于自监督学习策略开发了一种名为RapidLymphoma的深度学习流程,用于(1)检测PCNSL,(2)与其他中枢神经系统病变进行区分,以及(3)在前瞻性国际多中心队列和另外两个独立测试队列中测试诊断性能。我们使用了54000张来自手术切除和立体定向活检的SRH图像块进行训练,这些图像包括各种中枢神经系统肿瘤性/非肿瘤性病变。训练和测试数据来自4个国际三级医疗中心。最终的组织病理学诊断作为金标准。
在PCNSL和非PCNSL病变的前瞻性测试队列(n = 160)中,RapidLymphoma的总体平衡准确率达到97.81%±0.91,在检测PCNSL方面不劣于冰冻切片分析(100%对77.77%)。在区分异柠檬酸脱氢酶(IDH)野生型弥漫性胶质瘤和各种脑转移瘤与PCNSL时,另外两个测试队列(n = 420,n = 59)的平衡准确率分别达到95.44%±0.74和95.57%±2.47。视觉热图显示RapidLymphoma能够检测出特定类别的组织形态学关键特征。
RapidLymphoma在术中检测PCNSL并与其他中枢神经系统病变进行区分方面被证明是可靠且有效的。它能在3分钟内提供视觉反馈,有助于快速做出临床决策并制定后续治疗策略。