Suppr超能文献

中风后抑郁网络自发重组的潜在机制。

Mechanisms underlying the spontaneous reorganization of depression network after stroke.

作者信息

Fang Yirong, Chao Xian, Lu Zeyu, Huang Hongmei, Shi Ran, Yin Dawei, Chen Hao, Lu Yanan, Wang Jinjing, Wang Peng, Liu Xinfeng, Sun Wen

机构信息

Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.

Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.

出版信息

Neuroimage Clin. 2025;45:103723. doi: 10.1016/j.nicl.2024.103723. Epub 2024 Dec 10.

Abstract

Exploring the causal relationship between focal brain lesions and post-stroke depression (PSD) can provide therapeutic insights. However, a gap exists between causal and therapeutic information. Exploring post-stroke brain repair processes post-stroke could bridge this gap. We defined a depression network using the normative connectome and investigated the predictive capacity of lesion-induced network damage on depressive symptoms in discovery cohort of 96 patients, at baseline and six months post-stroke. Stepwise functional connectivity (SFC) was used to examine topological changes in the depression network over time to identify patterns of network reorganization. The predictive value of reorganization information was evaluated for follow-up symptoms in discovery and validation cohort 1 (22 worsening PSD patients) as well as for treatment responsiveness in validation cohort 2 (23 antidepressant-treated patients). We evaluated the consistency of significant reorganization areas with neuromodulation targets. Spatial correlations of network reorganization patterns with gene expression and neurotransmitter maps were analyzed. The predictive power of network damage for symptoms diminished at follow-up compared to baseline (Δadjusted R = -0.070, p < 0.001). Reorganization information effectively predicted symptoms at follow-up in the discovery cohort (adjust R = 0.217, 95 %CI: 0.010 to 0.431), as well as symptom exacerbation (r = 0.421, p = 0.033) and treatment responsiveness (r = 0.587, p = 0.012) in the validation cohorts. Regions undergoing significant reorganization overlapped with neuromodulatory targets known to be effective in treating depression. The reorganization of the depression network was associated with immune-inflammatory responses gene expressions and gamma-aminobutyric acid. Our findings may yield important insights into the repair mechanisms of PSD and provide a critical context for developing post-stroke treatment strategies.

摘要

探索局灶性脑损伤与中风后抑郁症(PSD)之间的因果关系有助于提供治疗思路。然而,因果关系信息与治疗信息之间存在差距。研究中风后脑修复过程可能会填补这一差距。我们利用标准连接组定义了一个抑郁症网络,并在96例患者的发现队列中,于基线期和中风后6个月,研究了病变诱导的网络损伤对抑郁症状的预测能力。采用逐步功能连接(SFC)来检查抑郁症网络随时间的拓扑变化,以识别网络重组模式。评估了发现队列和验证队列1(22例PSD病情恶化患者)中重组信息对随访症状的预测价值,以及验证队列2(23例接受抗抑郁药治疗的患者)中重组信息对治疗反应性的预测价值。我们评估了显著重组区域与神经调节靶点的一致性。分析了网络重组模式与基因表达和神经递质图谱的空间相关性。与基线期相比,随访时网络损伤对症状的预测能力有所下降(调整后R值变化=-0.070,p<0.001)。重组信息有效地预测了发现队列随访时的症状(调整后R=0.217,95%CI:0.010至0.431),以及验证队列中的症状加重情况(r=0.421,p=0.033)和治疗反应性(r=0.587,p=0.012)。经历显著重组的区域与已知对治疗抑郁症有效的神经调节靶点重叠。抑郁症网络的重组与免疫炎症反应基因表达和γ-氨基丁酸有关。我们的研究结果可能会为PSD的修复机制提供重要见解,并为制定中风后治疗策略提供关键背景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1733/11699604/ea686dd878af/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验