Chan Matthew C, Alfawaz Yazeed, Paul Arnav, Shukla Diwakar
Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois.
Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois.
Biophys J. 2025 Jan 21;124(2):379-392. doi: 10.1016/j.bpj.2024.12.013. Epub 2024 Dec 13.
Cyanobacteria are responsible for up to 80% of aquatic carbon dioxide fixation and have evolved a specialized carbon concentrating mechanism to increase photosynthetic yield. As such, cyanobacteria are attractive targets for synthetic biology and engineering approaches to address the demands of global energy security, food production, and climate change for an increasing world's population. The bicarbonate transporter BicA is a sodium-dependent, low-affinity, high-flux bicarbonate symporter expressed in the plasma membrane of cyanobacteria. Despite extensive biochemical characterization of BicA, including the resolution of the BicA crystal structure, the dynamic understanding of the bicarbonate transport mechanism remains elusive. To this end, we have collected over 1 ms of all-atom molecular dynamics simulation data of the BicA dimer to elucidate the structural rearrangements involved in the substrate transport process. We further characterized the energetics of the transition of BicA protomers and investigated potential mutations that are shown to decrease the free energy barrier of conformational transitions. In all, our study illuminates a detailed mechanistic understanding of the conformational dynamics of bicarbonate transporters and provides atomistic insights to engineering these transporters for enhanced photosynthetic production.
蓝藻负责高达80%的水生二氧化碳固定,并进化出一种特殊的碳浓缩机制以提高光合产量。因此,蓝藻是合成生物学和工程方法的有吸引力的目标,以满足全球能源安全、粮食生产以及不断增长的世界人口对气候变化的需求。碳酸氢盐转运蛋白BicA是一种依赖钠的、低亲和力、高通量的碳酸氢盐同向转运蛋白,存在于蓝藻的质膜中。尽管对BicA进行了广泛的生化表征,包括解析了BicA的晶体结构,但对碳酸氢盐转运机制的动态理解仍然难以捉摸。为此,我们收集了超过1毫秒的BicA二聚体全原子分子动力学模拟数据,以阐明底物转运过程中涉及的结构重排。我们进一步表征了BicA原体转变的能量学,并研究了显示可降低构象转变自由能垒的潜在突变。总之,我们的研究阐明了对碳酸氢盐转运蛋白构象动力学的详细机制理解,并为改造这些转运蛋白以提高光合产量提供了原子层面的见解。