Suppr超能文献

基于机器学习的新型模型用于预测化生性乳腺癌的预后。

Novel models based on machine learning to predict the prognosis of metaplastic breast cancer.

作者信息

Zhang Yinghui, An Wenxin, Wang Cong, Liu Xiaolei, Zhang Qihong, Zhang Yue, Cheng Shaoqiang

机构信息

Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.

Department of Urology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.

出版信息

Breast. 2025 Feb;79:103858. doi: 10.1016/j.breast.2024.103858. Epub 2024 Dec 11.

Abstract

BACKGROUND

Metaplastic breast cancer (MBC) is a rare and highly aggressive histological subtype of breast cancer. There remains a significant lack of precise predictive models available for use in clinical practice.

METHODS

This study utilized patient data from the SEER database (2010-2018) for data analysis. We utilized prognostic factors to develop a novel machine learning model (CatBoost) for predicting patient survival rates. Simultaneously, our hospital's cohort of MBC patients was utilized to validate our model. We compared the benefits of radiotherapy among the three groups of patients.

RESULTS

The CatBoost model we developed exhibits high accuracy and correctness, making it the best-performing model for predicting survival outcomes in patients with MBC (1-year AUC = 0.833, 3-year AUC = 0.806; 5-year AUC = 0.810). Furthermore, the CatBoost model maintains strong performance in an external independent dataset, with AUC values of 0.937 for 1-year survival, 0.907 for 3-year survival, and 0.890 for 5-year survival, respectively. Radiotherapy is more suitable for patients undergoing breast-conserving surgery with M0 stage [group1: (OS:HR = 0.499, 95%CI 0.320-0.777 p < 0.001; BCSS: HR = 0.519, 95%CI 0.290-0.929 p = 0.008)] and those with T3-4/N2-3M0 stage undergoing mastectomy [group2: (OS:HR = 0.595, 95%CI 0.437-0.810 p < 0.001; BCSS: HR = 0.607, 95%CI 0.427-0.862 p = 0.003)], compared to patients with stage T1-2/N0-1M0 undergoing mastectomy [group3: (OS:HR = 1.090, 95%CI 0.673-1.750 p = 0.730; BCSS: HR = 1.909, 95%CI 1.036-3.515 p = 0.038)].

CONCLUSION

We developed three machine learning prognostic models to predict survival rates in patients with MBC. Radiotherapy is considered more appropriate for patients who have undergone breast-conserving surgery with M0 stage as well as those in stage T3-4/N2-3M0 undergoing mastectomy.

摘要

背景

化生性乳腺癌(MBC)是一种罕见且侵袭性很强的乳腺癌组织学亚型。目前在临床实践中仍严重缺乏可供使用的精确预测模型。

方法

本研究利用监测、流行病学和最终结果(SEER)数据库(2010 - 2018年)中的患者数据进行分析。我们利用预后因素开发了一种新型机器学习模型(CatBoost)来预测患者生存率。同时,利用我院的MBC患者队列对我们的模型进行验证。我们比较了三组患者放疗的益处。

结果

我们开发的CatBoost模型具有较高的准确性和正确性,是预测MBC患者生存结局的最佳模型(1年曲线下面积[AUC]=0.833,3年AUC = 0.806;5年AUC = 0.810)。此外,CatBoost模型在外部独立数据集中保持了强大的性能,1年生存率的AUC值为0.937,3年生存率为0.907,5年生存率为0.890。与T1 - 2/N0 - 1M0期接受乳房切除术的患者相比[第3组:(总生存期[OS]:风险比[HR]=1.090,95%置信区间[CI] 0.673 - 1.750,P = 0.730;无远处复发生存期[BCSS]:HR = 1.909,95%CI 1.036 - 3.515,P = 0.038)],放疗更适合M0期接受保乳手术的患者[第1组:(OS:HR = 0.499,95%CI 0.320 - 0.777,P < 0.001;BCSS:HR = 0.519,95%CI 0.290 - 0.929,P = 0.008)]以及T3 - 4/N2 - 3M0期接受乳房切除术的患者[第2组:(OS:HR = 0.595,95%CI 0.437 - 0.810,P < 0.001;BCSS:HR = 0.607,95%CI 0.427 - 0.862,P = 0.003)]。

结论

我们开发了三种机器学习预后模型来预测MBC患者的生存率。放疗被认为更适合M0期接受保乳手术的患者以及T3 - 4/N2 - 3M0期接受乳房切除术的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddfc/11699302/51c9535f657a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验