Suppr超能文献

从数据到洞察:利用机器学习提升德国河流温室气体通量研究规模

From data to insights: Upscaling riverine GHG fluxes in Germany with machine learning.

作者信息

Mwanake R M, Wangari E G, Winkler K, Gettel G M, Butterbach-Bahl K, Kiese R

机构信息

Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany.

Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany.

出版信息

Sci Total Environ. 2025 Jan 1;958:177984. doi: 10.1016/j.scitotenv.2024.177984. Epub 2024 Dec 14.

Abstract

Global fluvial ecosystems are important sources of greenhouse gases (CO, CH and NO) to the atmosphere, but their estimates are plagued by uncertainties due to unaccounted spatio-temporal variabilities in the fluxes. In this study, we tested the potential of modeling these variabilities using several machine learning models (ML) and three different input datasets (remotely sensed vegetation indices, in-situ water quality, and a combination of both) from 20 headwater catchments in Germany that differ in catchment land use and stream size. We also upscaled fluvial GHG fluxes for Germany using the best ML model and explored the role of catchment land use on the GHG spatial-temporal trends. Model performance depended on the choice of ML model, input data and GHG type. Complex decision-tree-based models better predicted GHG concentrations and fluxes than other ML model types (r = 0.33 to 0.72). Our upscaled fluxes from catchment scale remotely sensed vegetation indices showed that total annual riverine CO equivalent fluxes from 2934 catchments in Germany ranged from 1.7 to 96.4 kg m yr (mean ± SE: 23.2 ± 0.001). The highest fluxes came from urban and intensively cropped catchments, while lower fluxes came from extensively cropped, forestry, and pasture-dominated catchments. Our study demonstrates that spatially and temporally resolved catchment vegetation indices from remotely sensed data in conjunction with machine learning models can be applied to upscale all three GHG concentrations and fluxes from diverse catchments, revealing important spatio-temporal trends associated with catchment land use.

摘要

全球河流生态系统是大气中温室气体(CO、CH 和 NO)的重要来源,但由于通量中未考虑的时空变异性,对其估算存在诸多不确定性。在本研究中,我们测试了使用几种机器学习模型(ML)以及来自德国 20 个源头集水区的三个不同输入数据集(遥感植被指数、现场水质以及两者的组合)来模拟这些变异性的潜力,这些集水区在集水区土地利用和溪流大小方面存在差异。我们还使用最佳的 ML 模型对德国的河流温室气体通量进行了尺度放大,并探讨了集水区土地利用对温室气体时空趋势的作用。模型性能取决于 ML 模型的选择、输入数据和温室气体类型。基于复杂决策树的模型比其他 ML 模型类型能更好地预测温室气体浓度和通量(r = 0.33 至 0.72)。我们从集水区尺度遥感植被指数放大得到的通量表明,德国 2934 个集水区的年河流 CO2 当量通量总计在 1.7 至 96.4 kg m⁻² yr⁻¹ 之间(平均值 ± 标准误差:23.2 ± 0.001)。通量最高的来自城市和集约种植的集水区,而较低的通量来自粗放种植、林业和以牧场为主的集水区。我们的研究表明,结合机器学习模型,利用遥感数据在空间和时间上解析的集水区植被指数可用于放大来自不同集水区的所有三种温室气体的浓度和通量,揭示与集水区土地利用相关的重要时空趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验