Singh Vishakha, Choudhary Shweta, Bhutkar Mandar, Nehul Sanketkumar, Ali Sabika, Singla Jitin, Kumar Pravindra, Tomar Shailly
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
Int J Biol Macromol. 2025 Feb;290:138751. doi: 10.1016/j.ijbiomac.2024.138751. Epub 2024 Dec 13.
The emergence of the SARS-CoV-2 Omicron variant highlights the need for innovative strategies to address evolving viral threats. This study bioengineered three nanobodies H11-H4, C5, and H3 originally targeting the Wuhan RBD, to bind more effectively to the Omicron RBD. A structure-based in silico affinity maturation pipeline was developed to enhance their binding affinities. The pipeline consists of three key steps: high-throughput in silico mutagenesis of complementarity-determining regions (CDRs), protein-protein docking for screening, and molecular dynamics (MD) simulations for assessment of the complex stability. A total of 741, 551, and 684 mutations were introduced in H11-H4, C5, and H3 nanobodies, respectively. Protein-protein docking and MD simulations shortlisted high-affinity mutants for H11-H4(6), C5(5), and H3(6). Further, recombinant production of H11-H4 mutants and Omicron RBD enabled experimental validation through Isothermal Titration Calorimetry (ITC). The H11-H4 mutants R27E, S57D, S107K, D108W, and A110I exhibited improved binding affinities with dissociation constant (K) values ranging from ~8.8 to ~27 μM, compared to the H11-H4 nanobody K of ~32 μM, representing a three-fold enhancement. This study demonstrates the potential of the developed in silico affinity maturation pipeline as a rapid, cost-effective method for repurposing nanobodies, aiding the development of robust prophylactic strategies against evolving SARS-CoV-2 variants and other pathogens.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)奥密克戎变体的出现凸显了采用创新策略应对不断演变的病毒威胁的必要性。本研究对最初靶向武汉受体结合域(RBD)的三种纳米抗体H11-H4、C5和H3进行生物工程改造,使其能更有效地结合奥密克戎RBD。开发了一种基于结构的计算机辅助亲和力成熟流程,以增强它们的结合亲和力。该流程包括三个关键步骤:互补决定区(CDR)的高通量计算机辅助诱变、用于筛选的蛋白质-蛋白质对接以及用于评估复合物稳定性的分子动力学(MD)模拟。分别在H11-H4、C5和H3纳米抗体中引入了总共741、551和684个突变。蛋白质-蛋白质对接和MD模拟筛选出了H11-H4(6个)、C5(5个)和H3(6个)的高亲和力突变体。此外,H11-H4突变体和奥密克戎RBD的重组生产使得能够通过等温滴定量热法(ITC)进行实验验证。与解离常数(K)约为32 μM的H11-H4纳米抗体相比,H11-H4突变体R27E、S57D、S107K、D108W和A110I表现出更高的结合亲和力,K值范围约为8. μM至27 μM,提高了三倍。本研究证明了所开发的计算机辅助亲和力成熟流程作为一种快速、经济高效的纳米抗体重新设计方法的潜力,有助于开发针对不断演变的SARS-CoV-2变体和其他病原体的强大预防策略。