Suppr超能文献

用于可持续能源应用的多原子催化剂的最新进展

Recent Advances in Multi-Atom Catalysts for Sustainable Energy Applications.

作者信息

Wang Qing, Cheng Bo, Cai Shichang, Li Xiaoxiao, Lu Di, Zhang Naying, Chen Chaoqun, Zhang Hanlu, Feng Yagang, Duan Lei, Qin Shaoyong, Meng Zihan

机构信息

School of Material Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.

School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.

出版信息

Molecules. 2025 Jun 30;30(13):2818. doi: 10.3390/molecules30132818.

Abstract

Single-atom catalysts characterized by their novel electronic configurations and exceptional atomic utilization efficiency have emerged as potential alternatives to costly noble metal catalysts, garnering extensive research attention in various electrocatalytic fields. However, the inherent characteristics of single metal centers constrain their further application in catalyzing multi-electron reactions. In contrast, multi-atom catalysts (MACs), particularly dual-atom catalysts (DACs), possess multiple active metal sites that can significantly enhance catalytic performance through synergistic effects. This review summarizes recent developments in multi-atom catalysts, focusing on synthesis methods, design strategies, and the correlation between interatomic synergy and catalytic efficiency. Furthermore, we discuss their applications in key electrochemical reactions, including the hydrogen evolution reaction, oxygen reduction reaction, and oxygen evolution reaction. Finally, we outline the opportunities and challenges in this field to guide the development of high-efficiency catalysts for sustainable energy conversion applications.

摘要

单原子催化剂以其新颖的电子构型和卓越的原子利用效率脱颖而出,成为昂贵贵金属催化剂的潜在替代品,在各种电催化领域引起了广泛的研究关注。然而,单金属中心的固有特性限制了它们在催化多电子反应中的进一步应用。相比之下,多原子催化剂(MACs),特别是双原子催化剂(DACs),具有多个活性金属位点,可通过协同效应显著提高催化性能。本文综述了多原子催化剂的最新进展,重点介绍了合成方法、设计策略以及原子间协同作用与催化效率之间的关系。此外,我们还讨论了它们在关键电化学反应中的应用,包括析氢反应、氧还原反应和析氧反应。最后,我们概述了该领域的机遇与挑战,以指导用于可持续能源转换应用的高效催化剂的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f95f/12251337/ccc20be4e4b6/molecules-30-02818-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验