Yao Yuqi, Wang Qi, Chen Xin, Yang Jiewei, Tang Weijian, Xu Xiaopeng, Wu Yihui, Peng Qiang
School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
Small. 2025 Feb;21(5):e2409568. doi: 10.1002/smll.202409568. Epub 2024 Dec 15.
The stability of the precursor is essential for producing high-quality perovskite films with minimal non-radiative recombination. In this study, methionine sulfoxide (MTSO), which features multiple electron-donation sites, is strategically chosen as a precursor stabilizer and crystal growth mediator for inverted perovskite solar cells (PSCs). MTSO stabilizes the precursor by inhibiting the oxidation of iodide ions and passivates charged traps through coordination and hydrogen bonding interactions. This leads to enhanced crystallinity, reduced non-radiative recombination, and decreased internal residual stress in perovskite film. As a result, remarkable power conversion efficiencies of 25.91% (certified 25.76%) with a minimal voltage deficit of 0.36 V for a 0.09-cm inverted PSC, and 21.96% for a 12.96-cm (active area) perovskite minimodule, have been achieved, respectively. Furthermore, the unencapsulated devices demonstrated excellent long-term thermal aging and operational stability, retaining over 90% and 92% of their original efficiencies after 500 h of continuous thermal aging at 85 °C and 2500 h of continuous maximum power point tracking under 1 sun (white light LED array) illumination at 30 ± 5 °C. This study underscores the importance of the rational design of functional molecules for stabilizing the precursor and regulating the crystallization of perovskite films, advancing the practical development of PSCs.
前驱体的稳定性对于制备具有最小非辐射复合的高质量钙钛矿薄膜至关重要。在本研究中,具有多个电子供体位点的甲硫氨酸亚砜(MTSO)被策略性地选为倒置钙钛矿太阳能电池(PSC)的前驱体稳定剂和晶体生长介质。MTSO通过抑制碘离子的氧化来稳定前驱体,并通过配位和氢键相互作用钝化带电陷阱。这导致钙钛矿薄膜的结晶度提高、非辐射复合减少以及内部残余应力降低。结果,对于0.09平方厘米的倒置PSC,实现了25.91%(认证为25.76%)的显著功率转换效率,最小电压损失为0.36伏;对于12.96平方厘米(有源面积)的钙钛矿微型模块,功率转换效率为21.96%。此外,未封装的器件表现出优异的长期热老化和运行稳定性,在85°C下连续热老化500小时以及在30±5°C下1个太阳(白光LED阵列)光照下连续最大功率点跟踪2500小时后,分别保持其原始效率的90%以上和92%以上。这项研究强调了合理设计功能分子以稳定前驱体和调节钙钛矿薄膜结晶的重要性,推动了PSC的实际发展。