Arifiadi Anindityo, Wichmann Lennart, Brake Tobias, Lechtenfeld Christian, Buchmann Julius, Demelash Feleke, Yan Peng, Brunklaus Gunther, Cekic-Laskovic Isidora, Wiemers-Meyer Simon, Winter Martin, Kasnatscheew Johannes
MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstr. 46, 48149, Münster, Germany.
International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstr. 40, 48149, Münster, Germany.
Small. 2025 May;21(19):e2410762. doi: 10.1002/smll.202410762. Epub 2024 Dec 15.
Increasing the upper cut-off voltage (UCV) enhances the specific energy of Li-ion batteries (LIBs), but is accompanied by higher capacity fade as a result of electrode cross-talk, i.e., transition metals (TM) dissolution from cathode and deposition on anode, finally triggering high surface area lithium (HSAL) formation due to locally enhanced resistance. Here, LiPF, LiBF, lithium difluoro(oxalate)borate (LiDFOB), lithium bis(oxalate)borate (LiBOB), lithium bis(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in carbonate-based solvents are investigated in LiNiCoMnO (NCM 622) || graphite pouch cells with 4.5 V UCV. Despite the lower oxidative stabilities of LiBF and LiDFOB, thus enhanced HF formation, TM dissolution, and consequently electrode cross-talk, higher capacity retention is observed compared to the case of LiPF electrolyte. Counterintuitively, it is not the TM deposit amount but rather the Li plating morphology that governs capacity fade, as these salts cause more uniform and compact lithium plating, i.e., lower surface area. In contrast, the dendritic HSAL with LiPF has a higher surface area, and more parasitic reactions, thus active Li ("Li inventory") losses and capacity fade. Although NCM initiates the failure cascade, the capacity losses and cycle life of high-voltage LIBs are predominantly determined by the anode, in particular the Li plating morphology and the corresponding surface area.
提高截止电压(UCV)可提高锂离子电池(LIBs)的比能量,但由于电极串扰,即过渡金属(TM)从阴极溶解并沉积在阳极上,最终会导致更高的容量衰减,由于局部电阻增加,最终触发高比表面积锂(HSAL)的形成。在此,在具有4.5 V UCV的LiNiCoMnO(NCM 622)||石墨软包电池中,研究了碳酸酯基溶剂中的LiPF、LiBF、二氟草酸硼酸锂(LiDFOB)、双草酸硼酸锂(LiBOB)、双(氟磺酰)亚胺锂(LiFSI)和双(三氟甲磺酰)亚胺锂(LiTFSI)。尽管LiBF和LiDFOB的氧化稳定性较低,因此会增强HF的形成、TM的溶解以及电极串扰,但与LiPF电解质相比,仍观察到更高的容量保持率。与直觉相反,决定容量衰减的不是TM的沉积量,而是锂镀层的形态,因为这些盐会导致更均匀、更致密的锂镀层,即更低的比表面积。相比之下,LiPF形成的树枝状HSAL具有更高的比表面积和更多的寄生反应,从而导致活性锂(“锂存量”)损失和容量衰减。尽管NCM引发了故障级联,但高压LIBs的容量损失和循环寿命主要由阳极决定,特别是锂镀层的形态和相应的比表面积。