Streipert Benjamin, Stolz Lukas, Homann Gerrit, Janßen Pia, Cekic-Laskovic Isidora, Winter Martin, Kasnatscheew Johannes
MEET Battery Research Center, University of Münster, Corrensstraße 46, 48149, Münster, Germany.
Helmholtz-Institute Münster (HI MS) IEK-12, Forschungszentrum Jülich GmbH, Corrensstrasse 46, 48149, Münster, Germany.
ChemSusChem. 2020 Oct 7;13(19):5301-5307. doi: 10.1002/cssc.202001530. Epub 2020 Aug 17.
High-voltage electrodes based on, for example, LiNi Mn 0 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs. Li|Li . Referring to literature, they are frequently supposed to be unstable, though conclusions are still controversial and clearly depend on the used investigation method. For example, the galvanostatic method, as a common method in battery research, points to the opposite, thus to a stability of the inactive materials, which can be derived from, for example, the high decomposition plateau at 5.56 V vs. Li|Li and stable performance of the LNMO charge/discharge cycling. This work aims to unravel this apparent contradiction of the galvanostatic method with the literature by a thorough investigation of possible trace oxidation reactions in cumulative manner, that is, over many charge/discharge cycles. Indeed, the cumulated irreversible specific capacity amounts to ≈10 mAh g during the initial 50 charge/discharge cycles, which is determined by imitating extreme LNMO high-voltage conditions using electrodes solely consisting of inactive materials. This can explain the ambiguities in stability interpretations of the galvanostatic method and the literature, as the respective irreversible specific capacity is obviously too low for distinct detection in conventional galvanostatic approaches and can be only detected at extreme high-voltage conditions. In this regard, the technique of chronoamperometry is shown to be an effective and proper complementary tool for electrochemical stability research in a qualitative and quantitative manner.
基于例如LiNiMn0(LNMO)活性材料的高压电极要求非活性材料在相对于Li|Li为4.95 V时具有氧化稳定性。参考相关文献,尽管结论仍存在争议且明显取决于所使用的研究方法,但它们通常被认为是不稳定的。例如,恒电流法作为电池研究中的常用方法,却得出了相反的结论,即非活性材料具有稳定性,这可以从例如相对于Li|Li在5.56 V处的高分解平台以及LNMO充放电循环的稳定性能推导出来。这项工作旨在通过以累积的方式,即经过许多充放电循环,对可能的微量氧化反应进行深入研究,来解开恒电流法与文献之间这一明显的矛盾。实际上,在最初的50个充放电循环中,累积的不可逆比容量约为10 mAh g,这是通过使用仅由非活性材料组成的电极模拟极端的LNMO高压条件来确定的。这可以解释恒电流法和文献在稳定性解释上的模糊性,因为在传统的恒电流方法中,各自的不可逆比容量明显过低而无法进行明确检测,只有在极端高压条件下才能检测到。在这方面,计时电流法被证明是一种用于电化学稳定性研究的有效且合适的定性和定量补充工具。