Suppr超能文献

采用有限元模型和机器学习模型对内置椭圆形钢管增强的矩形碳纤维增强塑料(CFRP)约束混凝土柱进行参数研究。

Parametric investigation of rectangular CFRP-confined concrete columns reinforced by inner elliptical steel tubes using finite element and machine learning models.

作者信息

Isleem Haytham F, Zewudie Besukal Befikadu, Bahrami Alireza, Kumar Rakesh, Xingchong Wang, Samui Pijush

机构信息

School of Applied Technologies, Qujing Normal University, Qujing 655011, Yunnan, China.

Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Ethiopia.

出版信息

Heliyon. 2023 Dec 15;10(2):e23666. doi: 10.1016/j.heliyon.2023.e23666. eCollection 2024 Jan 30.

Abstract

Nowadays, due to the structural advantages gained by combining three different materials' properties, columns made of carbon-fiber reinforced polymer (CFRP)-confined concrete with inner steel tube have received researchers' interest. This article presents the nonlinear finite element analysis and multiple machine learning (ML) model-based study on the behavior of round corner rectangular CFRP-confined concrete short columns reinforced by the inner high-strength elliptical steel tube under the axial load. The reliability of the proposed nonlinear finite element model was verified against the existing experimental investigations. The effects of the parameters such as the concrete grade, thickness of reinforcing steel tube, cross-sectional size of inner steel tube, and thickness of CFRP on the behavior of the columns are comprehended in this study. Furthermore, multiple ML models were proposed to predict the ultimate axial load, ultimate axial strain, and lateral strain of the test specimens. The reliability of the proposed ML models was evaluated by six distinct performance metrics. From the parametric investigation, it was found that concrete with lower compressive strength gained more strength enhancement because of confinement between CFRP and the inner steel tube than high-strength concrete relative to its unconfined compressive strength. The proposed ML models of extreme gradient boosting and random forest provided the best-fit results than the artificial neural network and Gaussian process regression models in predicting the axial load and axial and lateral strains of the columns.

摘要

如今,由于结合了三种不同材料的特性而获得的结构优势,由内部钢管和碳纤维增强聚合物(CFRP)约束混凝土制成的柱体受到了研究人员的关注。本文对内部高强度椭圆形钢管增强的圆角矩形CFRP约束混凝土短柱在轴向荷载作用下的性能进行了非线性有限元分析和基于多机器学习(ML)模型的研究。通过与现有的试验研究对比,验证了所提出的非线性有限元模型的可靠性。本研究还探讨了混凝土强度等级、加强钢管厚度、内部钢管横截面尺寸和CFRP厚度等参数对柱体性能的影响。此外,还提出了多个ML模型来预测试验试件的极限轴向荷载、极限轴向应变和横向应变。通过六个不同的性能指标评估了所提出的ML模型的可靠性。通过参数研究发现,相对于无约束抗压强度,抗压强度较低的混凝土由于CFRP和内部钢管之间的约束作用,比高强度混凝土获得了更大的强度增强。在预测柱体的轴向荷载以及轴向和横向应变方面,所提出的极限梯度提升和随机森林ML模型比人工神经网络和高斯过程回归模型提供了更好的拟合结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/025d/11639692/02a71d3f2023/gr1.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验