Dhiya'ulhaq Riswanda Ayu, Safira Anisya, Fahmiyah Indah, Ghani Mohammad
Data Science Technology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia.
MethodsX. 2024 Nov 2;13:103031. doi: 10.1016/j.mex.2024.103031. eCollection 2024 Dec.
The fishing industry has a large role in the Indonesian economy, with potential profits in 2020 of around US$ 1.338 billion. Tuban Regency is one of the regions in East Java that contributes to the fisheries sector. Fisheries relate to the work of fishermen. Accidents in shipping are still a major concern. One of the natural factors that influence shipping accidents is the height of the waves. Fisherman safety regulations have been established by the Ministry of Maritime Affairs and Fisheries and the Meteorology, Climatology and Geophysics Agency. Apart from regulations, the results of wave height predictions using the Long Short-Term Memory (LSTM) and Extreme Gradient Boosting (XGBoost) methods can help fishermen determine shipping departures, thereby reducing the risk of accidents. In this study, the Grid Search hyperparameter tuning process was used for both methods which were carried out on four location coordinates. Based on the analysis results, LSTM is superior in predicting wave height for the next 30 days because it can predict wave height at all three locations, with results at the first location (RMSE 0.045; MAE 0.029; MAPE 8.671 %), second location (RMSE 0.051; MAE 0.035; MAPE 10.64 %), and third location (RMSE 0.044; MAE 0.027; MAPE 7.773 %), while XGBoost only has the best value at fourth location (RMSE 0.040; MAE 0.025; MAPE 7.286 %).•Hyperparameter tuning with gridsearch is used in LSTM and XGBoost to obtain optimal accuracy•LSTM outperforms in three locations, while XGBoost outperforms in the fourth location.•Advanced prediction techniques such as LSTM and XGBoost improve fishermen's safety by providing accurate wave height estimates, thereby reducing the possibility of shipping accidents.
渔业在印度尼西亚经济中发挥着重要作用,2020年的潜在利润约为13.38亿美元。图班摄政区是东爪哇省对渔业有贡献的地区之一。渔业与渔民的工作相关。航运事故仍然是一个主要问题。影响航运事故的自然因素之一是海浪高度。海事和渔业部以及气象、气候和地球物理局已经制定了渔民安全规定。除了规定之外,使用长短期记忆(LSTM)和极端梯度提升(XGBoost)方法进行海浪高度预测的结果可以帮助渔民确定航运出发时间,从而降低事故风险。在本研究中,对这两种方法都使用了网格搜索超参数调整过程,该过程在四个位置坐标上进行。根据分析结果,LSTM在预测未来30天的海浪高度方面更具优势,因为它可以预测所有三个位置的海浪高度,在第一个位置的结果为(均方根误差0.045;平均绝对误差0.029;平均绝对百分比误差8.671%),第二个位置为(均方根误差0.051;平均绝对误差0.035;平均绝对百分比误差10.64%),第三个位置为(均方根误差0.044;平均绝对误差0.027;平均绝对百分比误差7.773%),而XGBoost仅在第四个位置具有最佳值(均方根误差0.040;平均绝对误差0.025;平均绝对百分比误差7.286%)。
• 使用网格搜索进行超参数调整用于LSTM和XGBoost以获得最佳精度
• LSTM在三个位置表现更优,而XGBoost在第四个位置表现更优。
• 诸如LSTM和XGBoost等先进的预测技术通过提供准确的海浪高度估计来提高渔民的安全性,从而降低航运事故的可能性。