Suppr超能文献

基于鲸鱼优化算法的改进指数平滑灰色霍尔特模型用于电价预测

Improved exponential smoothing grey-holt models for electricity price forecasting using whale optimization.

作者信息

Diboma Benjamin Salomon, Sapnken Flavian Emmanuel, Hamaidi Mohammed, Wang Yong, Noumo Prosper Gopdjim, Tamba Jean Gaston

机构信息

Higher Institute of Transport, Logistics and Commerce, PO Box 22, University of Ebolowa, Ambam, Cameroon.

University of Douala University Institute of Technology, PO Box 8698, Douala, Cameroon.

出版信息

MethodsX. 2024 Sep 1;13:102926. doi: 10.1016/j.mex.2024.102926. eCollection 2024 Dec.

Abstract

This study introduces a ground-breaking approach, the Whale Optimization Algorithm (WOA)-based multivariate exponential smoothing Grey-Holt (GMHES) model, designed for electricity price forecasting. Key features of the proposed WOA-GMHES(1,N) model include leveraging historical data to comprehend the underlying trends in electricity prices and utilizing the WOA algorithm for adaptive optimization of model parameters to capture evolving market dynamics. Evaluating the model on authentic high- and low-voltage electricity price data from Cameroon demonstrates its superiority over competing models. The WOA-GMHES(1,N) model achieves remarkable performance with RMSE and SMAPE scores of 12.63 and 0.01 %, respectively, showcasing its accuracy and reliability. Notably, the model proves to be computationally efficient, generating forecasts in <1.3 s. Three key aspects of customization distinguish this novel approach:•The WOA algorithm dynamically adjusts model parameters based on evolving electricity market dynamics.•The model employs a sophisticated GMHES approach, considering multiple factors for a comprehensive understanding of price trends.•The WOA-GMHES(1,N) model stands out for its computational efficiency, providing rapid and precise forecasts, making it a valuable tool for time-sensitive decision-making in the energy sector.

摘要

本研究介绍了一种开创性的方法,即基于鲸鱼优化算法(WOA)的多元指数平滑灰色霍尔特(GMHES)模型,用于电价预测。所提出的WOA-GMHES(1,N)模型的关键特性包括利用历史数据来理解电价的潜在趋势,并使用WOA算法对模型参数进行自适应优化,以捕捉不断变化的市场动态。在喀麦隆真实的高低压电价数据上对该模型进行评估,证明了其优于竞争模型。WOA-GMHES(1,N)模型分别以12.63的均方根误差(RMSE)和0.01%的对称平均绝对百分比误差(SMAPE)得分取得了显著的性能,展示了其准确性和可靠性。值得注意的是,该模型在计算上是高效的,能在<1.3秒内生成预测。这种新颖方法的定制有三个关键方面:

•WOA算法根据不断变化的电力市场动态动态调整模型参数。

•该模型采用复杂的GMHES方法,考虑多个因素以全面理解价格趋势。

•WOA-GMHES(1,N)模型因其计算效率而脱颖而出,能提供快速而精确的预测,使其成为能源领域对时间敏感的决策中的一个有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9300/11639469/1aec43611a3d/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验