Suppr超能文献

基于改进的集成指数平滑法的卷积神经网络-长短期记忆网络算法用于预测日前电价。

The improved integrated Exponential Smoothing based CNN-LSTM algorithm to forecast the day ahead electricity price.

作者信息

Shejul Kunal, Harikrishnan R, Gupta Harshita

机构信息

Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University), Pune, India.

出版信息

MethodsX. 2024 Aug 20;13:102923. doi: 10.1016/j.mex.2024.102923. eCollection 2024 Dec.

Abstract

The deregulation of electricity market has led to the development of the short-term electricity market. The power generators and consumers can sell and purchase the electricity in the day ahead terms. The market clearing electricity price varies throughout the day due to the increase in the consumers bidding for electricity. Forecasting of the electricity in the day ahead market is of significance for appropriate bidding. To predict the electricity price the modified method of Exponential Smoothing-CNN-LSTM is proposed based on the time series method of Exponential Smoothing and Deep Learning methods of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). The dataset used for assessment of the forecasting algorithms is collected from the day ahead electricity market at the Indian Energy Exchange (IEX). The forecasting results of the Exponential Smoothing-CNN-LSTM method evaluated in terms of Mean Absolute Error (MAE) as 0.11, Root Mean Squared Error (RMSE) as 0.17 and Mean Absolute Percentage Error (MAPE) as 1.53 % indicates improved performance. The proposed algorithm can be used to forecast the time series in other domains as finance, retail, healthcare, manufacturing.•The method of Exponential Smoothing-CNN-LSTM is proposed for forecasting the electricity price a day ahead for accurate bidding for the short-term electricity market participants.•The forecasting results indicate the better performance of the proposed method than the existing techniques of Exponential Smoothing, LSTM and CNN-LSTM due to the advantages of the Exponential Smoothing to extract the levels and seasonality and with the CNN-LSTM methods ability to model the complex spatial and temporal dependencies in the time series.

摘要

电力市场的放松管制推动了短期电力市场的发展。发电商和消费者可以按日前条款买卖电力。由于消费者对电力的竞价增加,市场清算电价全天都在变化。对日前市场的电力进行预测对于适当的竞价具有重要意义。为了预测电价,基于指数平滑的时间序列方法以及卷积神经网络(CNN)和长短期记忆(LSTM)的深度学习方法,提出了改进的指数平滑 - CNN - LSTM方法。用于评估预测算法的数据集是从印度能源交易所(IEX)的日前电力市场收集的。以平均绝对误差(MAE)为0.11、均方根误差(RMSE)为0.17和平均绝对百分比误差(MAPE)为1.53%来评估的指数平滑 - CNN - LSTM方法的预测结果表明其性能有所提高。所提出的算法可用于预测金融、零售、医疗保健、制造业等其他领域的时间序列。•提出了指数平滑 - CNN - LSTM方法来预测日前电价,以便短期电力市场参与者进行准确竞价。•预测结果表明,由于指数平滑在提取水平和季节性方面的优势以及CNN - LSTM方法在对时间序列中的复杂空间和时间依赖性进行建模的能力,所提出的方法比现有的指数平滑、LSTM和CNN - LSTM技术具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d78/11387362/1ca522a46004/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验