Suppr超能文献

临床研究中的源数据核查(SDV)质量:一项范围综述

Source Data Verification (SDV) quality in clinical research: A scoping review.

作者信息

Hamidi Muayad, Eisenstein Eric L, Garza Maryam Y, Morales Kayla Joan Torres, Edwards Erika M, Rocca Mitra, Cramer Amy, Singh Gurparkash, Stephenson-Miles Kimberly A, Syed Mahanaz, Wang Zhan, Lanham Holly, Facile Rhonda, Pierson Justine M, Collins Cal, Wei Henry, Zozus Meredith

机构信息

University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.

Duke University, Durham, NC, USA.

出版信息

J Clin Transl Sci. 2024 May 21;8(1):e101. doi: 10.1017/cts.2024.551. eCollection 2024.

Abstract

INTRODUCTION

The value of Source Data Verification (SDV) has been a common theme in the applied Clinical Translational Science literature. Yet, few published assessments of SDV quality exist even though they are needed to design risk-based and reduced monitoring schemes. This review was conducted to identify reports of SDV quality, with a specific focus on accuracy.

METHODS

A scoping review was conducted of the SDV and clinical trial monitoring literature to identify articles addressing SDV quality. Articles were systematically screened and summarized in terms of research design, SDV context, and reported measures.

RESULTS

The review found significant heterogeneity in underlying SDV methods, domains of SDV quality measured, the outcomes assessed, and the levels at which they were reported. This variability precluded comparison or pooling of results across the articles. No absolute measures of SDV accuracy were identified.

CONCLUSIONS

A definitive and comprehensive characterization of SDV process accuracy was not found. Reducing the SDV without understanding the risk of critical findings going undetected, i.e., SDV sensitivity, is counter to recommendations in Good Clinical Practice and the principles of Quality by Design. Reference estimates (or methods to obtain estimates) of SDV accuracy are needed to confidently design risk-based, reduced SDV processes for clinical studies.

摘要

引言

源数据验证(SDV)的价值一直是应用临床转化科学文献中的一个共同主题。然而,尽管设计基于风险和减少监测的方案需要对SDV质量进行评估,但很少有已发表的相关评估。本综述旨在识别SDV质量报告,特别关注准确性。

方法

对SDV和临床试验监测文献进行范围综述,以确定涉及SDV质量的文章。根据研究设计、SDV背景和报告的指标对文章进行系统筛选和总结。

结果

综述发现,基础SDV方法、所测量的SDV质量领域、评估的结果以及报告的层面存在显著异质性。这种变异性使得无法对各文章的结果进行比较或汇总。未发现SDV准确性的绝对指标。

结论

未找到对SDV过程准确性的确切和全面描述。在不了解关键发现未被发现的风险(即SDV敏感性)的情况下减少SDV,与《药物临床试验质量管理规范》中的建议和设计质量原则相悖。为了可靠地设计临床研究基于风险的、减少的SDV流程,需要SDV准确性的参考估计值(或获取估计值的方法)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6062/11639101/407722e65ef0/S205986612400551X_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验