Suppr超能文献

利用人工智能通过即时超声检查检测血友病中的关节积血。

Utilizing artificial intelligence for the detection of hemarthrosis in hemophilia using point-of-care ultrasonography.

作者信息

Tyrrell Pascal N, Alvarez-Román María Teresa, Bakeer Nihal, Brand-Staufer Brigitte, Jiménez-Yuste Victor, Kras Susan, Martinoli Carlo, Mendez Mauro, Nagao Azusa, Ozelo Margareth, Ricciardi Janaina B S, Zak Marek, Roth Johannes

机构信息

Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.

Institute of Medical Science, University of Toronto, Toronto, Canada.

出版信息

Res Pract Thromb Haemost. 2024 Oct 23;8(8):102602. doi: 10.1016/j.rpth.2024.102602. eCollection 2024 Nov.

Abstract

BACKGROUND

Recurrent hemarthrosis and resultant hemophilic arthropathy are significant causes of morbidity in persons with hemophilia, despite the marked evolution of hemophilia care. Prevention, timely diagnosis, and treatment of bleeding episodes are key. However, a physical examination or a patient's assessment of musculoskeletal pain may not accurately identify a joint bleed. This difficulty is compounded as hemophilic arthropathy progresses.

OBJECTIVES

Our system aims to utilize artificial intelligence and ultrasonography (US; point-of-care and handheld) to enable providers, and ultimately patients, to detect joint bleeds at the bedside and at home. We aimed to develop and assess the reliability of artificial intelligence algorithms in detecting and segmenting synovial recess distension (SRD; an indicator of disease activity) on US images of adult and pediatric knee, elbow, and ankle joints.

METHODS

A total of 12,145 joint exams, comprising 61,501 US images from 7 international healthcare centers, were collected. The dataset included healthy participants and adult and pediatric persons with hemophilia, with and without SRD. Images were manually labeled by 2 experts and used to train binary convolutional neural network classifiers and segmentation models. Metrics to evaluate performance included accuracy, sensitivity, specificity, and area under the curve.

RESULTS

The algorithms exhibited high performance across all joints and all cohorts. Specifically, the knee model showed an accuracy of 97%, sensitivity of 96%, specificity of 97%, and an area under the curve of 0.97 in SRD. High Dice coefficients (80%-85%) were achieved in segmentation tasks across all joints.

CONCLUSION

This technology could assist with the early detection and management of hemarthrosis in hemophilia.

摘要

背景

尽管血友病治疗有了显著进展,但复发性关节积血及由此导致的血友病性关节病仍是血友病患者发病的重要原因。预防、及时诊断和治疗出血发作是关键。然而,体格检查或患者对肌肉骨骼疼痛的评估可能无法准确识别关节出血。随着血友病性关节病的进展,这一困难更加突出。

目的

我们的系统旨在利用人工智能和超声检查(即时护理和手持式),使医护人员以及最终患者能够在床边和家中检测关节出血。我们旨在开发并评估人工智能算法在检测和分割成人及儿童膝关节、肘关节和踝关节超声图像上的滑膜隐窝扩张(SRD;疾病活动指标)方面的可靠性。

方法

共收集了来自7个国际医疗中心的12145次关节检查,包括61501幅超声图像。数据集包括健康参与者以及患有和未患有SRD的成年和儿童血友病患者。图像由2名专家手动标注,并用于训练二元卷积神经网络分类器和分割模型。评估性能的指标包括准确率、灵敏度、特异性和曲线下面积。

结果

该算法在所有关节和所有队列中均表现出高性能。具体而言,膝关节模型在SRD方面的准确率为97%,灵敏度为96%,特异性为97%,曲线下面积为0.97。在所有关节的分割任务中均获得了较高的骰子系数(80%-85%)。

结论

这项技术可有助于血友病关节积血的早期检测和管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/11638597/59a0d9f40816/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验