Suppr超能文献

利用被动感知行为和生态瞬时评估对多发性硬化症严重程度进行纵向数字表型分析。

Longitudinal Digital Phenotyping of Multiple Sclerosis Severity Using Passively Sensed Behaviors and Ecological Momentary Assessments.

作者信息

Xia Zongqi, Chikersal Prerna, Venkatesh Shruthi, Walker Elizabeth, Dey Anind, Goel Mayank

机构信息

Department of Neurology, University of Pittsburgh, Pittsburgh, PA.

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

出版信息

medRxiv. 2024 Dec 8:2024.11.02.24316647. doi: 10.1101/2024.11.02.24316647.

Abstract

BACKGROUND

Longitudinal tracking of multiple sclerosis (MS) symptoms in an individual's own environment may improve self-monitoring and clinical management for people with MS (pwMS).

OBJECTIVE

We present a machine learning approach that enables longitudinal monitoring of clinically relevant patient-reported symptoms for pwMS by harnessing passively collected data from sensors in smartphones and fitness trackers.

METHODS

We divide the collected data into discrete periods for each patient. For each prediction period, we first extract patient-level behavioral features from the current period (action features) and the previous period (context features). Then, we apply a machine learning (ML) approach based on Support Vector Machine with Radial Bias Function Kernel and AdaBoost to predict the presence of depressive symptoms (every two weeks) and high global MS symptom burden, severe fatigue, and poor sleep quality (every four weeks).

RESULTS

Between November 16, 2019, and January 24, 2021, 104 pwMS (84.6% women, 93.3% non-Hispanic White, 44.0±11.8 years mean±SD age) from a clinic-based MS cohort completed 12-weeks of data collection, including a subset of 44 pwMS (88.6% women, 95.5% non-Hispanic White, 45.7±11.2 years) who completed 24-weeks of data collection. In total, we collected approximately 12,500 days of passive sensor and behavioral health data from the participants. Among the best-performing models with the least sensor data requirement, ML algorithm predicts depressive symptoms with an accuracy of 80.6% (35.5% improvement over baseline; F1-score: 0.76), high global MS symptom burden with an accuracy of 77.3% (51.3% improvement over baseline; F1-score: 0.77), severe fatigue with an accuracy of 73.8% (45.0% improvement over baseline; F1-score: 0.74), and poor sleep quality with an accuracy of 72.0% (28.1% improvement over baseline; F1-score: 0.70). Further, sensor data were largely sufficient for predicting symptom severity, while the prediction of depressive symptoms benefited from minimal active patient input in the form of response to two brief questions on the day before the prediction point.

CONCLUSIONS

Our digital phenotyping approach using passive sensors on smartphones and fitness trackers may help patients with real-world, continuous, self-monitoring of common symptoms in their own environment and assist clinicians with better triage of patient needs for timely interventions in MS (and potentially other chronic neurological disorders).

摘要

背景

在个体自身环境中对多发性硬化症(MS)症状进行纵向追踪,可能会改善MS患者(pwMS)的自我监测和临床管理。

目的

我们提出一种机器学习方法,通过利用从智能手机和健身追踪器中的传感器被动收集的数据,对pwMS患者报告的临床相关症状进行纵向监测。

方法

我们将收集到的数据按每位患者划分为离散时间段。对于每个预测期,我们首先从当前时间段(行动特征)和前一时间段(背景特征)提取患者层面的行为特征。然后,我们应用基于带有径向基函数核的支持向量机和AdaBoost的机器学习(ML)方法,来预测抑郁症状的出现(每两周一次)以及高总体MS症状负担、严重疲劳和睡眠质量差(每四周一次)。

结果

在2019年11月16日至2021年1月24日期间,来自一个基于诊所的MS队列的104名pwMS患者(84.6%为女性,93.3%为非西班牙裔白人,平均年龄44.0±11.8岁)完成了12周的数据收集,其中包括44名pwMS患者(88.6%为女性,95.5%为非西班牙裔白人,45.7±11.2岁)的一个子集,他们完成了24周的数据收集。我们总共从参与者那里收集了大约12500天的被动传感器和行为健康数据。在所需传感器数据最少的表现最佳的模型中,ML算法预测抑郁症状的准确率为80.6%(比基线提高35.5%;F1分数:0.76),预测高总体MS症状负担的准确率为77.3%(比基线提高51.3%;F1分数:0.77),预测严重疲劳的准确率为73.8%(比基线提高45.0%;F1分数:0.74),预测睡眠质量差的准确率为72.0%(比基线提高28.1%;F1分数:0.70)。此外,传感器数据在很大程度上足以预测症状严重程度,而抑郁症状的预测受益于在预测点前一天以回答两个简短问题的形式提供的最少患者主动输入。

结论

我们使用智能手机和健身追踪器上的被动传感器的数字表型分析方法,可能有助于患者在自身环境中对常见症状进行真实、持续的自我监测,并协助临床医生更好地对患者需求进行分类,以便及时对MS(以及可能的其他慢性神经疾病)进行干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ffc/11643184/9bb8891305c3/nihpp-2024.11.02.24316647v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验