Suppr超能文献

双功能异戊二烯合酶的结构为二萜生物合成组装和环化提供了独特见解。

Structure of Bifunctional Variediene Synthase Yields Unique Insight on Biosynthetic Diterpene Assembly and Cyclization.

作者信息

Wenger Eliott S, Christianson David W

出版信息

bioRxiv. 2024 Dec 4:2024.12.03.626647. doi: 10.1101/2024.12.03.626647.

Abstract

An unusual family of bifunctional terpene synthases has been discovered in which both catalytic domains - a prenyltransferase and a cyclase - are connected by a long, flexible linker. These enzymes are unique to fungi and catalyze the first committed steps in the biosynthesis of complex terpenoid natural products: the prenyltransferase assembles 5-carbon precursors to form C geranylgeranyl diphosphate (GGPP), and the cyclase converts GGPP into a polycyclic hydrocarbon product. Weak domain-domain interactions as well as linker flexibility render these enzymes refractory to crystallization and challenge their visualization by cryo-EM. Despite these challenges, we now present the first experimentally-determined structure of a massive, 495-kD bifunctional terpene synthase revealing the assembly of all catalytic domains. The cryo-EM structure of variediene synthase from (EvVS) exhibits a bollard-like architecture, consisting of a hexameric prenyltransferase core sandwiched between two triads of cyclase domains. Although prenyltransferase and cyclase active sites are relatively close together, enzymological measurements indicate that GGPP is not channeled from one to the other. Surprisingly, however, the individual cyclase domain from another bifunctional diterpene synthase, fusicoccadiene synthase from , preferentially receives GGPP from the EvVS prenyltransferase in substrate competition experiments. Our previous studies of fusicoccadiene synthase suggest that GGPP channeling occurs through transient binding of cyclase domains to the sides of the prenyltransferase oligomer. The bollard-like architecture of EvVS leaves the sides of the prenyltransferase oligomer open and accessible, suggesting that a non-native cyclase could bind to the sides of the prenyltransferase oligomer to achieve GGPP channeling.

摘要

人们发现了一类不同寻常的双功能萜烯合酶,其两个催化结构域——一个异戊烯基转移酶和一个环化酶——通过一个长的柔性连接子相连。这些酶是真菌所特有的,催化复杂萜类天然产物生物合成中的首个关键步骤:异戊烯基转移酶组装5碳前体以形成C 香叶基香叶基二磷酸(GGPP),环化酶则将GGPP转化为多环烃产物。结构域间的弱相互作用以及连接子的灵活性使得这些酶难以结晶,也给通过冷冻电镜对其进行可视化带来了挑战。尽管存在这些挑战,我们现在展示了首个通过实验确定的、质量为495 kD的双功能萜烯合酶的结构,揭示了所有催化结构域的组装情况。来自 (EvVS)的变二烯合酶的冷冻电镜结构呈现出一种系船柱样结构,由夹在两个环化酶结构域三联体之间的六聚体异戊烯基转移酶核心组成。尽管异戊烯基转移酶和环化酶的活性位点相对靠近,但酶学测量表明GGPP并不会从一个位点传递到另一个位点。然而,令人惊讶的是,在底物竞争实验中,来自另一种双功能二萜合酶——来自 的镰刀菌二烯合酶的单个环化酶结构域优先从EvVS异戊烯基转移酶接收GGPP。我们之前对镰刀菌二烯合酶的研究表明,GGPP传递是通过环化酶结构域与异戊烯基转移酶寡聚体侧面的瞬时结合实现的。EvVS的系船柱样结构使得异戊烯基转移酶寡聚体的侧面开放且可及,这表明一个非天然环化酶可以结合到异戊烯基转移酶寡聚体的侧面以实现GGPP传递。

相似文献

4
Engineering substrate channeling in a bifunctional terpene synthase.工程化双功能萜烯合酶的底物导向性。
Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2408064121. doi: 10.1073/pnas.2408064121. Epub 2024 Oct 4.
6
Assembly-Line Catalysis in Bifunctional Terpene Synthases.双功能萜类合酶中的装配线催化作用。
Acc Chem Res. 2021 Oct 19;54(20):3780-3791. doi: 10.1021/acs.accounts.1c00296. Epub 2021 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验