Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States.
Acc Chem Res. 2021 Oct 19;54(20):3780-3791. doi: 10.1021/acs.accounts.1c00296. Epub 2021 Jul 13.
The magnificent chemodiversity of more than 95 000 terpenoid natural products identified to date largely originates from catalysis by two types of terpene synthases, prenyltransferases and cyclases. Prenyltransferases utilize 5-carbon building blocks in processive chain elongation reactions to generate linear C isoprenoid diphosphates ( ≥ 2), which in turn serve as substrates for terpene cyclases that convert these linear precursors into structurally complex hydrocarbon products containing multiple rings and stereocenters. Terpene cyclization reactions are the most complex organic transformations found in nature in that more than half of the substrate carbon atoms undergo changes in chemical bonding during a multistep reaction sequence proceeding through several carbocation intermediates. Two general classes of cyclases are established on the basis of the chemistry of initial carbocation formation, and structural studies from our laboratory and others show that three fundamental protein folds designated α, β, and γ govern this chemistry. Catalysis by a class I cyclase occurs in an α domain, where a trinuclear metal cluster activates the substrate diphosphate leaving group to generate an allylic cation. Catalysis by a class II cyclase occurs in a β domain or at the interface of β and γ domains, where an aspartic acid protonates the terminal π bond of the substrate to yield a tertiary carbocation. Crystal structures reveal domain architectures of α, αβ, αβγ, βγ, and β.In some terpene synthases, these domains are combined to yield bifunctional enzymes that catalyze successive biosynthetic steps in assembly line fashion. Structurally characterized examples include bacterial geosmin synthase, an αα domain enzyme that catalyzes a class I cyclization reaction of C farnesyl diphosphate in one active site and a transannulation-fragmentation reaction in the other to yield C geosmin and C acetone products. In comparison, plant abietadiene synthase is an αβγ domain enzyme in which C geranylgeranyl diphosphate undergoes tandem class II-class I cyclization reactions to yield the tricyclic product. Recent structural studies from our laboratory show that bifunctional fungal cyclases form oligomeric complexes for assembly line catalysis. Bifunctional (+)-copalyl diphosphate synthase adopts (αβγ) architecture in which the α domain generates geranylgeranyl diphosphate, which then undergoes class II cyclization in the βγ domains to yield the bicyclic product. Bifunctional fusicoccadiene synthase adopts (αα) or (αα) architecture in which one α domain generates geranylgeranyl diphosphate, which then undergoes class I cyclization in the other α domain to yield the tricyclic product. The prenyltransferase α domain mediates oligomerization in these systems. Attached by flexible polypeptide linkers, cyclase domains splay out from oligomeric prenyltransferase cores.In this Account, we review structure-function relationships for these bifunctional terpene synthases, with a focus on the oligomeric systems studied in our laboratory. The observation of substrate channeling for fusicoccadiene synthase suggests a model for dynamic cluster channeling in catalysis by oligomeric assembly line terpenoid synthases. Resulting efficiencies in carbon management suggest that such systems could be particularly attractive for use in synthetic biology approaches to generate high-value terpenoid natural products.
迄今为止,已鉴定出超过 95000 种具有壮观化学多样性的萜类天然产物,其主要来源于两类萜烯合酶,即 prenyltransferase 和 cyclase 的催化作用。prenyltransferase 利用 5 碳结构单元在连续的链延伸反应中生成线性 C 异戊二烯二磷酸酯(≥2),后者反过来又作为萜烯环化酶的底物,将这些线性前体转化为含有多个环和手性中心的结构复杂的碳氢化合物产物。萜烯环化反应是自然界中最复杂的有机转化,因为在多步反应序列中,超过一半的底物碳原子在经过几个碳正离子中间体的过程中发生化学键的变化。根据初始碳正离子形成的化学性质,确立了两类环化酶,而我们实验室和其他实验室的结构研究表明,三种基本的蛋白质折叠结构,分别是α、β和γ,控制着这种化学性质。I 类环化酶的催化作用发生在α结构域中,其中一个三聚金属簇激活底物二磷酸酯的离去基团,生成烯丙基阳离子。II 类环化酶的催化作用发生在β结构域或β和γ结构域的界面上,其中天冬氨酸质子化底物的末端π键,生成叔碳正离子。晶体结构揭示了α、αβ、αβγ、βγ和β的结构域架构。在一些萜烯合酶中,这些结构域组合在一起,产生具有连续生物合成步骤的多功能酶。结构特征的例子包括细菌土臭素合酶,这是一种αα结构域酶,在一个活性位点催化 C 法呢基二磷酸酯的 I 类环化反应,在另一个活性位点催化 transannulation-fragmentation 反应,生成 C 土臭素和 C 丙酮产物。相比之下,植物扁柏烯合酶是一种αβγ结构域酶,其中 C 金合欢基二磷酸酯通过串联的 II 类- I 类环化反应生成三环产物。我们实验室的最近结构研究表明,多功能真菌环化酶形成寡聚复合物进行装配线催化。双功能(+)- 石竹烯二磷酸合酶采用(αβγ)架构,其中α结构域生成金合欢基二磷酸酯,然后在βγ结构域中进行 II 类环化反应,生成双环产物。双功能佛司可林合酶采用(αα)或(αα)架构,其中一个α结构域生成金合欢基二磷酸酯,然后在另一个α结构域中进行 I 类环化反应,生成三环产物。prenyltransferase α 结构域介导这些系统中的寡聚化。环化酶结构域通过柔性多肽接头附着在寡聚 prenyltransferase 核心上。在这篇综述中,我们回顾了这些双功能萜烯合酶的结构-功能关系,重点介绍了我们实验室研究的寡聚系统。对佛司可林合酶的底物通道化的观察表明,在寡聚装配线萜烯合酶的催化中存在动态簇通道化的模型。由此产生的碳管理效率表明,对于生成高价值萜类天然产物的合成生物学方法,此类系统可能特别有吸引力。