Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States.
Biochemistry. 2021 Oct 26;60(42):3162-3172. doi: 10.1021/acs.biochem.1c00600. Epub 2021 Oct 5.
Copalyl diphosphate (CPP) synthase from (PvCPS) is a bifunctional diterpene synthase with both prenyltransferase and class II cyclase activities. The prenyltransferase α domain catalyzes the condensation of C dimethylallyl diphosphate with three successively added C isopentenyl diphosphates (IPPs) to form C geranylgeranyl diphosphate (GGPP), which then undergoes a class II cyclization reaction at the βγ domain interface to generate CPP. The prenyltransferase α domain mediates oligomerization to form a 648-kD (αβγ) hexamer. In the current study, we explore prenyltransferase structure-function relationships in this oligomeric assembly-line platform with the goal of generating alternative linear isoprenoid products. Specifically, we report steady-state enzyme kinetics, product analysis, and crystal structures of various site-specific variants of the prenyltransferase α domain. Crystal structures of the H786A, F760A, S723Y, S723F, and S723T variants have been determined at resolutions of 2.80, 3.10, 3.15, 2.65, and 2.00 Å, respectively. The substitution of S723 with bulky aromatic amino acids in the S723Y and S723F variants constricts the active site, thereby directing the formation of the shorter C isoprenoid, farnesyl diphosphate. While the S723T substitution only subtly alters enzyme kinetics and does not compromise GGPP biosynthesis, the crystal structure of this variant reveals a nonproductive binding mode for IPP that likely accounts for substrate inhibition at high concentrations. Finally, mutagenesis of the catalytic general acid in the class II cyclase domain, D313A, significantly compromises prenyltransferase activity. This result suggests molecular communication between the prenyltransferase and cyclase domains despite their distant connection by a flexible polypeptide linker.
(朊病毒)中的 (PvCPS) 是一种具有双重功能的二萜合酶,具有前体转移酶和 II 类环化酶活性。前体转移酶的 α 结构域催化 C 二甲基烯丙基二磷酸与连续添加的三个 C 异戊烯基二磷酸(IPPs)缩合形成 C 香叶基香叶基二磷酸(GGPP),然后在βγ 结构域界面上进行 II 类环化反应生成 CPP。前体转移酶的α结构域介导寡聚化形成 648kD(αβγ)六聚体。在本研究中,我们探索了这个寡聚组装线平台中的前体转移酶结构-功能关系,旨在产生替代的线性异戊烯基产物。具体来说,我们报告了各种定点突变的前体转移酶α结构域的稳态酶动力学、产物分析和晶体结构。H786A、F760A、S723Y、S723F 和 S723T 变体的晶体结构分别在 2.80、3.10、3.15、2.65 和 2.00Å 的分辨率下得到确定。S723Y 和 S723F 变体中用较大的芳香族氨基酸取代 S723 会限制活性部位,从而促使形成较短的 C 异戊烯基产物,法尼基二磷酸。虽然 S723T 取代仅略微改变酶动力学,并且不会破坏 GGPP 生物合成,但该变体的晶体结构揭示了一种非生产性的 IPP 结合模式,这可能解释了在高浓度下的底物抑制。最后,突变 II 类环化酶结构域中的催化酸,D313A,显著降低了前体转移酶的活性。这一结果表明尽管前体转移酶和环化酶结构域通过柔性多肽接头远距离连接,但它们之间存在分子通讯。