Suppr超能文献

接近爆发性同步决定了神经和经济危机中的网络崩溃与恢复轨迹。

Proximity to Explosive Synchronization Determines Network Collapse and Recovery Trajectories in Neural and Economic Crises.

作者信息

Lee UnCheol, Kim Hyoungkyu, Kim Minkyung, Oh Gabjin, Park Ayoung, Joo Pangyu, Pal Dinesh, Tracey Irene, Warnaby Catherine E, Sleigh Jamie, Mashour George A

机构信息

Department of Anesthesiology, Center for Consciousness Science, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA.

Department of Anesthesiology, Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, Michigan, USA.

出版信息

bioRxiv. 2024 Dec 3:2024.11.28.625924. doi: 10.1101/2024.11.28.625924.

Abstract

When complex systems move away from criticality-a balance between order and chaos-they are no longer optimized. Furthermore, when criticality is lost too quickly, or recovery is delayed, system damage can result. However, the mechanism for these abnormally fast or slow critical transitions remains unknown. Here, we show that the proximity of a complex network to explosive synchronization (ES), a first-order phase transition, determines the trajectories of criticality loss and recovery after perturbations. Our computational models revealed characteristic dynamics based on network proximity to ES, enabling us to infer network phase transition types from empirical data and predict criticality transition patterns. We validated our predictions using empirical data from the human brain under anesthesia and the stock market during an economic crisis, demonstrating that early and prolonged recoveries can be systematically predicted. This study has implications for designing resilient networks that withstand perturbations and recover quickly.

摘要

当复杂系统偏离临界状态(一种秩序与混沌之间的平衡)时,它们就不再处于最优状态。此外,当临界状态过快丧失或恢复延迟时,可能会导致系统受损。然而,这些异常快速或缓慢的临界转变机制仍然未知。在这里,我们表明复杂网络与爆发性同步(ES,一种一阶相变)的接近程度决定了扰动后临界状态丧失和恢复的轨迹。我们的计算模型揭示了基于网络与ES接近程度的特征动力学,使我们能够从经验数据中推断网络相变类型并预测临界转变模式。我们使用麻醉状态下人类大脑的经验数据和经济危机期间的股票市场数据验证了我们的预测,证明可以系统地预测早期和长期恢复情况。这项研究对于设计能够承受扰动并快速恢复的弹性网络具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb4/11642761/3b38bf85c4f6/nihpp-2024.11.28.625924v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验