Suppr超能文献

正电子发射断层扫描(PET)时间-活度曲线数据的同时多因素贝叶斯分析(SiMBA)的参考组织实现

A Reference Tissue Implementation of Simultaneous Multifactor Bayesian Analysis (SiMBA) of PET Time Activity Curve Data.

作者信息

Matheson Granville J, Lundberg Johan, Gärde Martin, Veldman Emma R, Tateno Amane, Okubo Yoshiro, Tiger Mikael, Ogden R Todd

机构信息

Department of Psychiatry, Columbia University, New York, 10032 NY, USA.

Department of Biostatistics, Columbia University Mailman School of Public Health, New York, 10032 NY, USA.

出版信息

bioRxiv. 2024 Dec 7:2024.12.04.626559. doi: 10.1101/2024.12.04.626559.

Abstract

PET analysis is conventionally performed as a two-stage process of quantification followed by analysis. We recently introduced SiMBA (Simultaneous Multifactor Bayesian Analysis), a hierarchical model that performs quantification and analysis for all brain regions of all individuals at once, and in so doing improves both the accuracy of parameter estimation as well as inferential efficiency. However until now, SiMBA has only been implemented for the two-tissue compartment model. We have now extended this general approach to also allow a non-invasive reference tissue implementation that includes both the full reference tissue model and the simplified reference tissue model. In simulated data, SiMBA improves quantitative parameter estimation accuracy, reducing error by, on average, 57% for binding potential ( ). In considerations of statistical power, our simulation studies indicate that the efficiency of SiMBA modeling approximately corresponds to improvements that would require doubling the sample size if using conventional methods, with no increase in the false positive rate. We applied the model to PET data measured with [C]AZ10419369, which binds selectively to the serotonin 1B receptor, in datasets collected at three different PET centres (n=139, n=44 and n=39). We show that SiMBA yields replicable inferences by comparing associations between PET parameters and age in the different datasets. Moreover, we show that time activity curve data from different centres can be combined in a single SiMBA model using covariates to control between-centre parameter differences, in order to harmonise data between centres. In summary, we present a novel approach for noninvasive quantification and analysis of PET time activity curve data which improves quantification and inferences, enables effective between-centre data harmonisation, and also yields replicable outcomes. This method has the potential to significantly expand the range of research questions which can be meaningfully tested using conventional sample sizes with PET imaging.

摘要

正电子发射断层扫描(PET)分析传统上是一个分两阶段进行的过程,先进行定量分析,然后再进行分析。我们最近引入了SiMBA(同时多因素贝叶斯分析),这是一种分层模型,可一次性对所有个体的所有脑区进行定量和分析,从而提高了参数估计的准确性和推理效率。然而,到目前为止,SiMBA仅应用于双组织隔室模型。我们现在已经扩展了这种通用方法,使其也允许非侵入性参考组织实现,包括完整参考组织模型和简化参考组织模型。在模拟数据中,SiMBA提高了定量参数估计的准确性,使结合潜能( )的误差平均降低了57%。在统计功效方面,我们的模拟研究表明,SiMBA建模的效率大致相当于使用传统方法时将样本量翻倍所带来的改进,且假阳性率没有增加。我们将该模型应用于在三个不同PET中心收集的数据集(n = 139、n = 44和n = 39)中用[C]AZ10419369测量的PET数据,[C]AZ10419369可选择性结合5-羟色胺1B受体。通过比较不同数据集中PET参数与年龄之间的关联,我们表明SiMBA产生了可重复的推断。此外,我们表明,来自不同中心的时间-活动曲线数据可以使用协变量在单个SiMBA模型中进行合并,以控制中心间的参数差异,从而实现中心间数据的协调统一。总之,我们提出了一种用于PET时间-活动曲线数据的非侵入性定量和分析的新方法,该方法提高了定量和推断能力,实现了有效的中心间数据协调统一,并且产生了可重复的结果。这种方法有可能显著扩大可以使用PET成像的传统样本量进行有意义测试的研究问题范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf53/11642925/364d4de44b4b/nihpp-2024.12.04.626559v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验